Математическое моделирование теплопереноса в помещении с газовым инфракрасным излучателем, системой воздухообмена и локальным ограждением рабочей зоны
Математическое моделирование теплопереноса в помещении с газовым инфракрасным излучателем, системой воздухообмена и локальным ограждением рабочей зоны
Аннотация:
Проведено математическое моделирование процессов теплопереноса в помещении с газовым инфракрасным излучателем, системой воздухообмена, горизонтальной панелью, имитирующей оборудование, и локальным ограждением. Решена система уравнений радиационного теплообмена, энергии и Навье — Стокса для воздуха и теплопроводности для твёрдых элементов. Полученные в результате моделирования поля температур и скоростей воздуха иллюстрируют возможность управления тепловым режимом локальной рабочей зоны при установке специального ограждения на её границе. Установлено, что изменяя высоту ограждения и материал, из которого оно изготовлено, можно изменять локальные и средние температуры воздуха локальной рабочей зоны. Результаты выполненных численных исследований дают основания для вывода о том, что при варьировании параметров локальных ограждений возможно создание более комфортных температурных условий в локальной рабочей зоне при работе газовых инфракрасных излучателей в условиях достаточно интенсивного воздухообмена.
Литература:
- Zhang C., Pomianowski M., Heiselberg P. K., Yu T. A review of integrated radiant heating/cooling with ventilation systems: Thermal comfort and indoor air quality // Energy and Buildings. 2020. V. 223. Article 110094; https://doi.org/10.1016/j.enbuild.2020.110094
- Karmann C, Schiavon S, Bauman F. Thermal comfort in buildings using radiant vs. all-air systems: A critical literature review // Building and Environment. 2017. V. 111. P. 123—31; https://doi.org/10.1016/j.buildenv.2016.10.020
- Song W, Zhang Z, Chen Z, Wang F, Yang B. Thermal comfort and energy performance of personal comfort systems (PCS): A systematic review and meta-analysis // Energy and Buildings. 2022. V. 256. Article 111747; https://doi.org/10.1016/j.enbuild.2021.111747
- Wang H., Li W., Wang J., Xu M., Ge B. Experimental study on local floor heating mats to improve thermal comfort of workers in cold environments // Building and Environment. 2021. V. 205. Article 108227; https://doi.org/10.1016/j.buildenv.2021.108227
- Verhaart J., Vesely M., Zeiler W. Personal heating: effectiveness and energy use // Building Research and Information. 2015. V. 43, Is. 3. P. 346–354; https://doi.org/10.1080/09613218.2015.1001606
- Tan J., Liu J., Liu W., Yu B., Zhang J. Performance on heating human body of an optimised radiant-convective combined personal electric heater // Building and Environment. 2022. V. 214. Article 108882; https://doi.org/10.1016/j.buildenv.2022.108882
- Du C., Liu H., Li C., Xiong J., Li B., Li G., Xi Z. Demand and efficiency evaluations of local convective heating to human feet and low body parts in cold environments // Building and Environment. 2020. V. 171. Article 106662; https://doi.org/10.1016/j.buildenv.2020.106662
- Oravec J., Sikula O., Krajcik M., Arici M., Mohapl M. A comparative study on the applicability of six radiant floor, wall, and ceiling heating systems based on thermal performance analysis // J. Building Engrg. 2021. V. 36. Article 102133; https://doi.org/10.1016/j.jobe.2020.102133
- Maznoy A., Kirdyashkin A., Pichugin N., Zambalov S., Petrov D. Development of a new infrared heater based on an annular cylindrical radiant burner for direct heating applications // Energy. 2020. V. 204. Article 117965; https://doi.org/10.1016/j.energy.2020.117965
- Kavga A., Karanastasi E., Konstas I., Panidis Th. Performance of an infrared heating system in a production greenhouse // IFAC Proc. 2013. V. 46, Is. 18. P. 235–240; https://doi.org/10.3182/20130828-2-SF-3019.00017
- Dudkiewicz E., Szalanski P. Overview of exhaust gas heat recovery technologies for radiant heating systems in large halls // Thermal Sci. Engrg. Progress. 2020. V. 18. Article 100522; https://doi.org/10.1016/j.tsep.2020.100522
- Kuznetsov G. V., Kurilenko N. I., Maksimov V. I., Nagornova T. A. Experimental and numerical study of heat transfer in production area heated by gas infrared source // Internat. J. Thermal Sci. 2020. V. 154. Article 106396; https://doi.org/10.1016/j.ijthermalsci.2020.106396
- Kuznetsov G. V., Maksimov V. I., Nagornova T. A., Voloshko I. V., Gutareva N. Y., Kurilenko N. I. Experimental determination of the worker’s clothing surface temperature during the ceramic gas heater operation // Thermal Sci. Engrg. Progress. 2021. V. 22. Article 100851; https://doi.org/10.1016/j.tsep.2021.100851
- Borisov B. V., Kuznetsov G. V., Maksimov V. I., Nagornova T. A., Gutareva N. Y. Numerical simulation of heat transfer in a large room with a working gas infrared emitter // J. Phys. Conf. Ser. 2020. V. 1675. Article 012074; DOI: 10.1088/1742-6596/1675/1/012074
- Bird B., Stewart W. E., Lightfoot E. N. Transport Phenomena. J. Wiley & Sons, 2007.
- Tritton D. J. Physical Fluid Dynamics. Clarendon Press, 1988.
- Wilcox D. C. Turbulence Modeling for CFD. DCW Ind., 1998.
- Kuzmin D., Mierka O., Turek S. On the implementation of the $k − \epsilon$ turbulence model in incompressible flow solvers based on a finite element discretization // Internat. J. Comput. Sci. Math. 2007. V. 1, N 2–4. P. 193–206; https://www.researchgate.net/publication/228529803
- Siegel R., Howell J. Thermal Radiation Heat Transfer. N. Y.: Taylor & Francis, 2002.
- Haynes W. M. Handbook of Chemistry and Physics 2015–2016. Boca Raton: Taylor & Francis, 2015.
Работа выполнена при финансовой поддержке Российского научного фонда (проект 20-19-00226).
Б. В. Борисов
- Национальный исследовательский Томский политехнический университет,
ул. Ленина, 30, г. Томск 634050, Россия
А. В. Вяткин
- Национальный исследовательский Томский политехнический университет,
ул. Ленина, 30, г. Томск 634050, Россия
Г. В. Кузнецов
- Национальный исследовательский Томский политехнический университет,
ул. Ленина, 30, г. Томск 634050, Россия
В. И. Максимов
- Национальный исследовательский Томский политехнический университет,
ул. Ленина, 30, г. Томск 634050, Россия
E-mail: elf@tpu.ru
Т. А. Нагорнова
- Национальный исследовательский Томский политехнический университет,
ул. Ленина, 30, г. Томск 634050, Россия
Статья поступила 08.08.2022 г.
После доработки — 08.08.2022 г.
Принята к публикации 29.09.2022 г.
Abstract:
Mathematical modeling of heat transfer processes in a room with a gas infrared heater, an air exchange system, a horizontal panel simulating equipment, and a local fence has been conducted. The system of equations of radiative heat transfer, energy and Navier—Stokes for air and thermal conductivity for solid elements were solved. The fields of temperatures and air velocities obtained as a result of modeling illustrate the possibility of controlling the thermal regime of a local working area when a special fence is installed at its border. It was found that by changing the height and the material of the fence, it is possible to change the local and average air temperatures of the local working area. The results give grounds for the conclusion that by varying the parameters of local fences, it is possible to create more comfortable temperature conditions in the local working area when gas infrared heaters operate under conditions of intense air exchange.
References:
- Zhang C., Pomianowski M., Heiselberg P. K., Yu T. A review of integrated radiant heating/cooling with ventilation systems: Thermal comfort and indoor air quality. Energy and Buildings, 2020, Vol. 223, article 110094; https://doi.org/10.1016/j.enbuild.2020.110094
- Karmann C., Schiavon S., Bauman F. Thermal comfort in buildings using radiant vs. all-air systems: A critical literature review. Building and Environment, 2017, Vol. 111, pp. 123—31; https://doi.org/10.1016/j.buildenv.2016.10.020
- Song W, Zhang Z, Chen Z, Wang F, Yang B. Thermal comfort and energy performance of personal comfort systems (PCS): A systematic review and meta-analysis. Energy and Buildings, 2022, Vol. 256, article 111747; https://doi.org/10.1016/j.enbuild.2021.111747
- Wang H., Li W., Wang J., Xu M., Ge B. Experimental study on local floor heating mats to improve thermal comfort of workers in cold environments. Building and Environment, 2021, Vol. 205, article 108227; https://doi.org/10.1016/j.buildenv.2021.108227
- Verhaart J., Vesely M., Zeiler W. Personal heating: effectiveness and energy use. Building Research and Information, 2015, Vol. 43, Is. 3, pp. 346–354; https://doi.org/10.1080/09613218.2015.1001606
- Tan J., Liu J., Liu W., Yu B., Zhang J. Performance on heating human body of an optimised radiant-convective combined personal electric heater. Building and Environment, 2022, Vol. 214, article 108882; https://doi.org/10.1016/j.buildenv.2022.108882
- Du C., Liu H., Li C., Xiong J., Li B., Li G., Xi Z. Demand and efficiency evaluations of local convective heating to human feet and low body parts in cold environments. Building and Environment, 2020, Vol. 171, article 106662; https://doi.org/10.1016/j.buildenv.2020.106662
- Oravec J., Sikula O., Krajcik M., Arici M., Mohapl M. A comparative study on the applicability of six radiant floor, wall, and ceiling heating systems based on thermal performance analysis. J. Building Engrg., 2021, Vol. 36, article 102133; https://doi.org/10.1016/j.jobe.2020.102133
- Maznoy A., Kirdyashkin A., Pichugin N., Zambalov S., Petrov D. Development of a new infrared heater based on an annular cylindrical radiant burner for direct heating applications. Energy, 2020, Vol. 204, article 117965; https://doi.org/10.1016/j.energy.2020.117965
- Kavga A., Karanastasi E., Konstas I., Panidis Th. Performance of an infrared heating system in a production greenhouse. IFAC Proc., 2013, Vol. 46, Is. 18, pp. 235–240; https://doi.org/10.3182/20130828-2-SF-3019.00017
- Dudkiewicz E., Szalanski P. Overview of exhaust gas heat recovery technologies for radiant heating systems in large halls. Thermal Sci. Engrg. Progress, 2020, Vol. 18, article 100522; https://doi.org/10.1016/j.tsep.2020.100522
- Kuznetsov G. V., Kurilenko N. I., Maksimov V. I., Nagornova T. A. Experimental and numerical study of heat transfer in production area heated by gas infrared source. Internat. J. Thermal Sci., 2020, Vol. 154, article 106396; https://doi.org/10.1016/j.ijthermalsci.2020.106396
- Kuznetsov G. V., Maksimov V. I., Nagornova T. A., Voloshko I. V., Gutareva N. Y., Kurilenko N. I. Experimental determination of the worker’s clothing surface temperature during the ceramic gas heater operation. Thermal Sci. Engrg. Progress, 2021, Vol. 22, article 100851; https://doi.org/10.1016/j.tsep.2021.100851
- Borisov B. V., Kuznetsov G. V., Maksimov V. I., Nagornova T. A., Gutareva N. Y. Numerical simulation of heat transfer in a large room with a working gas infrared emitter. J. Phys. Conf. Ser., 2020, Vol. 1675, article 012074; DOI: 10.1088/1742-6596/1675/1/012074
- Bird B., Stewart W. E., Lightfoot E. N. Transport Phenomena. J. Wiley & Sons, 2007.
- Tritton D. J. Physical Fluid Dynamics. Clarendon Press, 1988.
- Wilcox D. C. Turbulence Modeling for CFD. DCW Ind., 1998.
- Kuzmin D., Mierka O., Turek S. On the implementation of the $k − \epsilon$ turbulence model in incompressible flow solvers based on a finite element discretization. Internat. J. Comput. Sci. Math., 2007, Vol. 1, No. 2–4, pp. 193—206; https://www.researchgate.net/publication/228529803
- Siegel R., Howell J. Thermal Radiation Heat Transfer. N. Y.: Taylor & Francis, 2002.
- Haynes W.M. Handbook of Chemistry and Physics 2015–2016. Boca Raton: Taylor & Francis, 2015.