Адаптивный алгоритм обработки данных в условиях аддитивных помех фотоприёмника в задачах измерения трёхмерной геометрии методами фазовой триангуляции
Адаптивный алгоритм обработки данных в условиях аддитивных помех фотоприёмника в задачах измерения трёхмерной геометрии методами фазовой триангуляции
Аннотация:
Предложен адаптивный алгоритм обработки данных для измерения трёхмерного профиля методами фазовой триангуляции в условиях случайного аддитивного шума и ограниченного динамического диапазона фотоприёмника. Алгоритм основан на статистическом анализе распределения интенсивности в зарегистрированных фазовых изображениях и адаптивной фильтрации. Метод позволяет уменьшить погрешность измерения трёхмерной геометрии методами фазовой триангуляции и измерять трёхмерный профиль объектов сложного профиля с произвольными светорассеивающими свойствами. Метод перспективен для промышленного использования.
Литература:
- Gorthi S. S., Rastogi P. Fringe projection techniques: Whither we are? // Optics and Lasers Engrg. 2010. N 48. P. 133–140.
- Gruber M., Hausler G. Simple, robust and accurate phase-measuring triangulation // Optik. 1992. N 3. P. 118–122.
- Двойнишников С. В., Меледин В. Г., Главный В. Г., Наумов И. В., Чубов А. С. Оценка оптимальной частоты пространственной модуляции излучения 3D-измерений // Измерит. техника. 2015. № 5. С. 24–27.
- Dvoynishnikov S. V., Rakhmanov V. V., Kabardin I. K., Meledin V. G. Phase triangulation method with spatial modulation frequency optimization // Measurement. 2019. V. 145. P. 63–70.
- Wankhede P., Kodey S., Kurra S, Radhika S. A low cost surface strain measurement system using image processing for sheet metal forming applications // Measurement. 2022. V. 187. Article 110273; https://doi.org/10.1016/j.measurement.2021.110273
- Rudyk A., Semenov A., Kryvinska N., Semenova O. Study of phase and amplitude-phase methods for measuring a reactive element quality factor // Measurement. 2022. V. 187. Article 110271; http://doi.org/10.1016/j.measurement.2021.110271
- Jiang Y., Wang S., Qin H., Li B., Li Q. Similarity quantification of 3D surface topography measurements // Measurement. 2021. V. 186. Article 110207; https://doi.org/10.1088/1361-6501%2Fac1b41
- Dong Y., Li Z., Zhu L., Zhang X. Topography measurement and reconstruction of inner surfaces based on white light interference // Measurement. 2021. V. 186. Article 110199; https://doi.org/10.1016/j.measurement.2021.110199
- Guo F., Yang B., Zheng W., Liu S. Power frequency estimation using sine filtering of optimal initial phase // Measurement. 2021. V. 186. Article 110165; https://doi.org/10.1016/j.measurement.2021.110165
- Fan J., Feng Y., Mo J., Wang S. , Liang Q. 3D reconstruction of non-textured surface by combining shape from shading and stereovision // Measurement. 2021. V. 185. Article 110029; http://doi.org/10.1016/j.measurement.2021.110029
- Wang H., Ma J., Yang H., Sun F., Wei Y., Wang L. Development of three-dimensional pavement texture measurement technique using surface structured light projection // Measurement. 2021. V. 185. Article 110003; https://doi.org/10.1016/j.measurement.2021.110003
- Shi B., Ma Z., Ni X., Liu J., Liu H. A phase unwrapping method suitable for high frequency fringe based on edge feature // Measurement. 2021. V. 185. Article 109938; https://doi.org/10.1016/j.measurement.2021.109938
- Zhang Y., Fan N., Wu Y., Wu G., Luo H., Yan J., Yang S., Liu F. Four-pattern, phase-step non-sensitive phase shifting method based on Carre algorithm // Measurement. 2021. V. 171. Article 108762; https://doi.org/10.1016/j.measurement.2020.108762
- Luhmann T. Close range photogrammetry for industrial applications // J. Photogramm. Remote Sens. 2010. V. 65, N 6. P. 558–569; https://doi.org/10.1016/J.ISPRSJPRS.2010.06.003
- Li B., An Y., Capelleri D., Xu J., Zhang S. High-accuracy, high-speed 3D structured light imaging techniques and potential applications to intelligent robotics // Internat. J. Intell. Robot. Appl. 2017. V. 1, N 1. P. 86–103; https://doi.org/10.1007/s41315-016-0001-7
- Matthias S., Kastner M., Reithmeier E. Evaluation of system models for an endoscopic fringe projection system // Measurement. 2015. V. 73. P. 239–246; https://doi.org/10.1016/j.measurement.2015.05.024
- Chu C., Yang H., Wang L. Design of a pavement scanning system based on structured light of interference fringe // Measurement. 2019. V. 145. P. 410–418; https://doi.org/10.1016/J.measurement.2019.02.058
- Koutecky T., Palousek D., Brandejs J. Sensor planning system for fringe projection scanning of sheet metal parts // Measurement. 2016. V. 94. P. 60–70; https://doi.org/10.1016/j.measurement.2016.07.067
- Cao X., Xie W., Ahmed S. M., Li C. R. Defect detection method for rail surface based on line-structured light // Measurement. 2020. V. 159. Article 107771; https://doi.org/10.1016/j.measurement.2020.107771
- Двойнишников С. В. Устойчивый метод расшифровки интерферограмм с пошаговым сдвигом // Компьют. оптика. 2007. Т. 31, № 2. С. 21–25.
- Двойнишников С. В., Меледин В. Г. Способ бесконтактного измерения линейных размеров трёхмерных объектов. Патент РФ № 2433372, приоритет 10.11.11.
- Двойнишников С. В., Меледин В. Г. Способ бесконтактного измерения геометрии трёхмерных объектов. Патент РФ № 2439489, приоритет 15.09.2010.
С. В. Двойнишников
- Институт теплофизики им. С. С. Кутателадзе СО РАН,
просп. Акад. Лаврентьева, 1, г. Новосибирск 630090, Россия
E-mail: dv.s@mail.ru
Г. В. Бакакин
- Институт теплофизики им. С. С. Кутателадзе СО РАН,
просп. Акад. Лаврентьева, 1, г. Новосибирск 630090, Россия
E-mail: bakakin@itp.nsc.ru
В. О. Зуев
- Институт теплофизики им. С. С. Кутателадзе СО РАН,
просп. Акад. Лаврентьева, 1, г. Новосибирск 630090, Россия
E-mail: vlad.zuev.0017@mail.ru
В. Г. Меледин
- Институт теплофизики им. С. С. Кутателадзе СО РАН,
просп. Акад. Лаврентьева, 1, г. Новосибирск 630090, Россия
E-mail: meledin@itp.nsc.ru
Статья поступила 31.08.2022 г.
После доработки — 31.08.2022 г.
Принята к публикации 29.09.2022 г.
Abstract:
The paper proposes an adaptive data processing algorithm for measuring a three-dimensional profile using phase triangulation methods under conditions of random additive noise and a limited dynamic range of a photodetector. The algorithm is based on a statistical analysis of the intensity distribution in the registered phase images and adaptive filtering. The method makes it possible to reduce the measurement error of three-dimensional geometry by phase triangulation methods and to measure the three-dimensional profile of complex profile objects with arbitrary light-scattering properties. The method is very promising for industrial use.
References:
- Gorthi S. S., Rastogi P. Fringe projection techniques: Whither we are? Optics and Lasers Engrg., 2010, No. 48, pp. 133–140.
- Gruber M., Hausler G. Simple, robust and accurate phase-measuring triangulation. Optik, 1992, No. 3, pp. 118–122.
- Dvoinishnikov S. V., Meledin V. G., Glavnyi V. G., Naumov I. V., Chubov A. S. Otsenka optimal’noi chastoty prostranstvennoi modulyatsii izlucheniya 3D-izmerenii [Estimation of the optimal frequency of spatial modulation of 3D measurement radiation]. Izmerit. Tekhnika, 2015, No. 5, pp. 24–27.
- Dvoynishnikov S. V., Rakhmanov V. V., Kabardin I. K., Meledin V. G. Phase triangulation method with spatial modulation frequency optimization. Measurement, 2019, Vol. 145, pp. 63–70.
- Wankhede P., Kodey S., Kurra S, Radhika S. A low cost surface strain measurement system using image processing for sheet metal forming applications. Measurement, 2022, Vol. 187, article 110273; https://doi.org/10.1016/j.measurement.2021.110273
- Rudyk A., Semenov A., Kryvinska N., Semenova O. Study of phase and amplitude-phase methods for measuring a reactive element quality factor. Measurement, 2022, Vol. 187, article 110271; http://doi.org/10.1016/j.measurement.2021.110271
- Jiang Y., Wang S., Qin H., Li B., Li Q. Similarity quantification of 3D surface topography measurements. Measurement, 2021, Vol. 186, article 110207; https://doi.org/10.1088/1361-6501%2Fac1b41
- Dong Y., Li Z., Zhu L., Zhang X. Topography measurement and reconstruction of inner surfaces based on white light interference // Measurement. 2021. V. 186. Article 110199; https://doi.org/10.1016/j.measurement.2021.110199
- Guo F., Yang B., Zheng W., Liu S. Power frequency estimation using sine filtering of optimal initial phase. Measurement, 2021, Vol. 186, article 110165; https://doi.org/10.1016/j.measurement.2021.110165
- Fan J., Feng Y., Mo J., Wang S. , Liang Q. 3D reconstruction of non-textured surface by combining shape from shading and stereovision. Measurement, 2021, Vol. 185, article 110029; http://doi.org/10.1016/j.measurement.2021.110029
- Wang H., Ma J., Yang H., Sun F., Wei Y., Wang L. Development of three-dimensional pavement texture measurement technique using surface structured light projection. Measurement, 2021, Vol. 185, article 110003; https://doi.org/10.1016/j.measurement.2021.110003
- Shi B., Ma Z., Ni X., Liu J., Liu H. A phase unwrapping method suitable for high frequency fringe based on edge feature. Measurement, 2021, Vol. 185, article 109938; https://doi.org/10.1016/j.measurement.2021.109938
- Zhang Y., Fan N., Wu Y., Wu G., Luo H., Yan J., Yang S., Liu F. Four-pattern, phase-step non-sensitive phase shifting method based on Carre algorithm. Measurement, 2021, Vol. 171, article 108762; https://doi.org/10.1016/j.measurement.2020.108762
- Luhmann T. Close range photogrammetry for industrial applications. J. Photogramm. Remote Sens., 2010, Vol. 65, No. 6, pp. 558–569; https://doi.org/10.1016/J.ISPRSJPRS.2010.06.003
- Li B., An Y., Capelleri D., Xu J., Zhang S. High-accuracy, high-speed 3D structured light imaging techniques and potential applications to intelligent robotics. Internat. J. Intell. Robot. Appl., 2017, Vol. 1, No. 1, pp. 86–103; https://doi.org/10.1007/s41315-016-0001-7
- Matthias S., Kastner M., Reithmeier E. Evaluation of system models for an endoscopic fringe projection system. Measurement, 2015, Vol. 73, pp. 239–246; https://doi.org/10.1016/j.measurement.2015.05.024
- Chu C., Yang H., Wang L. Design of a pavement scanning system based on structured light of interference fringe. Measurement, 2019, Vol. 145, pp. 410–418; https://doi.org/10.1016/J.measurement.2019.02.058
- Koutecky T., Palousek D., Brandejs J. Sensor planning system for fringe projection scanning of sheet metal parts. Measurement, 2016, Vol. 94, pp. 60–70; https://doi.org/10.1016/j.measurement.2016.07.067
- Cao X., Xie W., Ahmed S. M., Li C.R. Defect detection method for rail surface based on line-structured light. Measurement, 2020, Vol. 159, article 107771; https://doi.org/10.1016/j.measurement.2020.107771
- Dvoinishnikov S. V. Ustoichivyi metod rasshifrovki interferogramm s poshagovym sdvigom [Stable method of decoding interferograms with step-by-step shift]. Komp’yut. optika, 2007, Vol. 31, No. 2, pp. 21–25.
- Dvoinishnikov S. V., Meledin V. G. Sposob beskontaktnogo izmereniya lineinykh razmerov trekhmernykh ob’ektov [A method for non-contact measurement of linear dimensions of three-dimensional objects]. Russian Patent, No. 2433372, prioritet 10.11.11.
- Dvoinishnikov S. V., Meledin V. G. Sposob beskontaktnogo izmereniya geometrii trekhmernykh ob’ektov [A method for non-contact measurement of the geometry of three-dimensional objects]. Russian Patent, No. 2439489, prioritet 15.09.2010