Адаптивный алгоритм обработки данных в условиях аддитивных помех фотоприёмника в задачах измерения трёхмерной геометрии методами фазовой триангуляции

Адаптивный алгоритм обработки данных в условиях аддитивных помех фотоприёмника в задачах измерения трёхмерной геометрии методами фазовой триангуляции

Двойнишников С. В., Бакакин Г. В., Зуев В. О., Меледин В. Г.

УДК 681.786.4 
DOI: 10.33048/SIBJIM.2023.26.104


Аннотация:

Предложен адаптивный алгоритм обработки данных для измерения трёхмерного профиля методами фазовой триангуляции в условиях случайного аддитивного шума и ограниченного динамического диапазона фотоприёмника. Алгоритм основан на статистическом анализе распределения интенсивности в зарегистрированных фазовых изображениях и адаптивной фильтрации. Метод позволяет уменьшить погрешность измерения трёхмерной геометрии методами фазовой триангуляции и измерять трёхмерный профиль объектов сложного профиля с произвольными светорассеивающими свойствами. Метод перспективен для промышленного использования.

Литература:
  1. Gorthi S. S., Rastogi P. Fringe projection techniques: Whither we are? // Optics and Lasers Engrg. 2010. N 48. P. 133–140.
     
  2. Gruber M., Hausler G. Simple, robust and accurate phase-measuring triangulation // Optik. 1992. N 3. P. 118–122.
     
  3. Двойнишников С. В., Меледин В. Г., Главный В. Г., Наумов И. В., Чубов А. С. Оценка оптимальной частоты пространственной модуляции излучения 3D-измерений // Измерит. техника. 2015. № 5. С. 24–27.
     
  4. Dvoynishnikov S. V., Rakhmanov V. V., Kabardin I. K., Meledin V. G. Phase triangulation method with spatial modulation frequency optimization // Measurement. 2019. V. 145. P. 63–70.
     
  5. Wankhede P., Kodey S., Kurra S, Radhika S. A low cost surface strain measurement system using image processing for sheet metal forming applications // Measurement. 2022. V. 187. Article 110273; https://doi.org/10.1016/j.measurement.2021.110273
     
  6. Rudyk A., Semenov A., Kryvinska N., Semenova O. Study of phase and amplitude-phase methods for measuring a reactive element quality factor // Measurement. 2022. V. 187. Article 110271; http://doi.org/10.1016/j.measurement.2021.110271
     
  7. Jiang Y., Wang S., Qin H., Li B., Li Q. Similarity quantification of 3D surface topography measurements // Measurement. 2021. V. 186. Article 110207; https://doi.org/10.1088/1361-6501%2Fac1b41
     
  8. Dong Y., Li Z., Zhu L., Zhang X. Topography measurement and reconstruction of inner surfaces based on white light interference // Measurement. 2021. V. 186. Article 110199; https://doi.org/10.1016/j.measurement.2021.110199
     
  9. Guo F., Yang B., Zheng W., Liu S. Power frequency estimation using sine filtering of optimal initial phase // Measurement. 2021. V. 186. Article 110165; https://doi.org/10.1016/j.measurement.2021.110165
     
  10. Fan J., Feng Y., Mo J., Wang S. , Liang Q. 3D reconstruction of non-textured surface by combining shape from shading and stereovision // Measurement. 2021. V. 185. Article 110029; http://doi.org/10.1016/j.measurement.2021.110029
     
  11. Wang H., Ma J., Yang H., Sun F., Wei Y., Wang L. Development of three-dimensional pavement texture measurement technique using surface structured light projection // Measurement. 2021. V. 185. Article 110003; https://doi.org/10.1016/j.measurement.2021.110003
     
  12. Shi B., Ma Z., Ni X., Liu J., Liu H. A phase unwrapping method suitable for high frequency fringe based on edge feature // Measurement. 2021. V. 185. Article 109938; https://doi.org/10.1016/j.measurement.2021.109938
     
  13. Zhang Y., Fan N., Wu Y., Wu G., Luo H., Yan J., Yang S., Liu F. Four-pattern, phase-step non-sensitive phase shifting method based on Carre algorithm // Measurement. 2021. V. 171. Article 108762; https://doi.org/10.1016/j.measurement.2020.108762
     
  14. Luhmann T. Close range photogrammetry for industrial applications // J. Photogramm. Remote Sens. 2010. V. 65, N 6. P. 558–569; https://doi.org/10.1016/J.ISPRSJPRS.2010.06.003
     
  15. Li B., An Y., Capelleri D., Xu J., Zhang S. High-accuracy, high-speed 3D structured light imaging techniques and potential applications to intelligent robotics // Internat. J. Intell. Robot. Appl. 2017. V. 1, N 1. P. 86–103; https://doi.org/10.1007/s41315-016-0001-7
     
  16. Matthias S., Kastner M., Reithmeier E. Evaluation of system models for an endoscopic fringe projection system // Measurement. 2015. V. 73. P. 239–246; https://doi.org/10.1016/j.measurement.2015.05.024
     
  17. Chu C., Yang H., Wang L. Design of a pavement scanning system based on structured light of interference fringe // Measurement. 2019. V. 145. P. 410–418; https://doi.org/10.1016/J.measurement.2019.02.058
     
  18. Koutecky T., Palousek D., Brandejs J. Sensor planning system for fringe projection scanning of sheet metal parts // Measurement. 2016. V. 94. P. 60–70; https://doi.org/10.1016/j.measurement.2016.07.067
     
  19. Cao X., Xie W., Ahmed S. M., Li C. R. Defect detection method for rail surface based on line-structured light // Measurement. 2020. V. 159. Article 107771; https://doi.org/10.1016/j.measurement.2020.107771
     
  20. Двойнишников С. В. Устойчивый метод расшифровки интерферограмм с пошаговым сдвигом // Компьют. оптика. 2007. Т. 31, № 2. С. 21–25.
     
  21. Двойнишников С. В., Меледин В. Г. Способ бесконтактного измерения линейных размеров трёхмерных объектов. Патент РФ № 2433372, приоритет 10.11.11.
     
  22. Двойнишников С. В., Меледин В. Г. Способ бесконтактного измерения геометрии трёхмерных объектов. Патент РФ № 2439489, приоритет 15.09.2010.

С. В. Двойнишников
  1. Институт теплофизики им. С. С. Кутателадзе СО РАН, 
    просп. Акад. Лаврентьева, 1, г. Новосибирск 630090, Россия

E-mail: dv.s@mail.ru

Г. В. Бакакин
  1. Институт теплофизики им. С. С. Кутателадзе СО РАН, 
    просп. Акад. Лаврентьева, 1, г. Новосибирск 630090, Россия

E-mail: bakakin@itp.nsc.ru

В. О. Зуев
  1. Институт теплофизики им. С. С. Кутателадзе СО РАН, 
    просп. Акад. Лаврентьева, 1, г. Новосибирск 630090, Россия

E-mail: vlad.zuev.0017@mail.ru

В. Г. Меледин
  1. Институт теплофизики им. С. С. Кутателадзе СО РАН, 
    просп. Акад. Лаврентьева, 1, г. Новосибирск 630090, Россия

E-mail: meledin@itp.nsc.ru

Статья поступила 31.08.2022 г.
После доработки — 31.08.2022 г.
Принята к публикации 29.09.2022 г.

Abstract:

The paper proposes an adaptive data processing algorithm for measuring a three-dimensional profile using phase triangulation methods under conditions of random additive noise and a limited dynamic range of a photodetector. The algorithm is based on a statistical analysis of the intensity distribution in the registered phase images and adaptive filtering. The method makes it possible to reduce the measurement error of three-dimensional geometry by phase triangulation methods and to measure the three-dimensional profile of complex profile objects with arbitrary light-scattering properties. The method is very promising for industrial use.

References:
  1. Gorthi S. S., Rastogi P. Fringe projection techniques: Whither we are? Optics and Lasers Engrg., 2010, No. 48, pp. 133–140.
     
  2. Gruber M., Hausler G. Simple, robust and accurate phase-measuring triangulation. Optik, 1992, No. 3, pp. 118–122.
     
  3. Dvoinishnikov S. V., Meledin V. G., Glavnyi V. G., Naumov I. V., Chubov A. S. Otsenka optimal’noi chastoty prostranstvennoi modulyatsii izlucheniya 3D-izmerenii [Estimation of the optimal frequency of spatial modulation of 3D measurement radiation]. Izmerit. Tekhnika, 2015, No. 5, pp. 24–27.
     
  4. Dvoynishnikov S. V., Rakhmanov V. V., Kabardin I. K., Meledin V. G. Phase triangulation method with spatial modulation frequency optimization. Measurement, 2019, Vol. 145, pp. 63–70.
     
  5. Wankhede P., Kodey S., Kurra S, Radhika S. A low cost surface strain measurement system using image processing for sheet metal forming applications. Measurement, 2022, Vol. 187, article 110273; https://doi.org/10.1016/j.measurement.2021.110273
     
  6. Rudyk A., Semenov A., Kryvinska N., Semenova O. Study of phase and amplitude-phase methods for measuring a reactive element quality factor. Measurement, 2022, Vol. 187, article 110271; http://doi.org/10.1016/j.measurement.2021.110271
     
  7. Jiang Y., Wang S., Qin H., Li B., Li Q. Similarity quantification of 3D surface topography measurements. Measurement, 2021, Vol. 186, article 110207; https://doi.org/10.1088/1361-6501%2Fac1b41
     
  8. Dong Y., Li Z., Zhu L., Zhang X. Topography measurement and reconstruction of inner surfaces based on white light interference // Measurement. 2021. V. 186. Article 110199; https://doi.org/10.1016/j.measurement.2021.110199
     
  9. Guo F., Yang B., Zheng W., Liu S. Power frequency estimation using sine filtering of optimal initial phase. Measurement, 2021, Vol. 186, article 110165; https://doi.org/10.1016/j.measurement.2021.110165
     
  10. Fan J., Feng Y., Mo J., Wang S. , Liang Q. 3D reconstruction of non-textured surface by combining shape from shading and stereovision. Measurement, 2021, Vol. 185, article 110029; http://doi.org/10.1016/j.measurement.2021.110029
     
  11. Wang H., Ma J., Yang H., Sun F., Wei Y., Wang L. Development of three-dimensional pavement texture measurement technique using surface structured light projection. Measurement, 2021, Vol. 185, article 110003; https://doi.org/10.1016/j.measurement.2021.110003
     
  12. Shi B., Ma Z., Ni X., Liu J., Liu H. A phase unwrapping method suitable for high frequency fringe based on edge feature. Measurement, 2021, Vol. 185, article 109938; https://doi.org/10.1016/j.measurement.2021.109938
     
  13. Zhang Y., Fan N., Wu Y., Wu G., Luo H., Yan J., Yang S., Liu F. Four-pattern, phase-step non-sensitive phase shifting method based on Carre algorithm. Measurement, 2021, Vol. 171, article 108762; https://doi.org/10.1016/j.measurement.2020.108762
     
  14. Luhmann T. Close range photogrammetry for industrial applications. J. Photogramm. Remote Sens., 2010, Vol. 65, No. 6, pp. 558–569; https://doi.org/10.1016/J.ISPRSJPRS.2010.06.003
     
  15. Li B., An Y., Capelleri D., Xu J., Zhang S. High-accuracy, high-speed 3D structured light imaging techniques and potential applications to intelligent robotics. Internat. J. Intell. Robot. Appl., 2017, Vol. 1, No. 1, pp. 86–103; https://doi.org/10.1007/s41315-016-0001-7
     
  16. Matthias S., Kastner M., Reithmeier E. Evaluation of system models for an endoscopic fringe projection system. Measurement, 2015, Vol. 73, pp. 239–246; https://doi.org/10.1016/j.measurement.2015.05.024
     
  17. Chu C., Yang H., Wang L. Design of a pavement scanning system based on structured light of interference fringe. Measurement, 2019, Vol. 145, pp. 410–418; https://doi.org/10.1016/J.measurement.2019.02.058
     
  18. Koutecky T., Palousek D., Brandejs J. Sensor planning system for fringe projection scanning of sheet metal parts. Measurement, 2016, Vol. 94, pp. 60–70; https://doi.org/10.1016/j.measurement.2016.07.067
     
  19. Cao X., Xie W., Ahmed S. M., Li C.R. Defect detection method for rail surface based on line-structured light. Measurement, 2020, Vol. 159, article 107771; https://doi.org/10.1016/j.measurement.2020.107771
     
  20. Dvoinishnikov S. V. Ustoichivyi metod rasshifrovki interferogramm s poshagovym sdvigom [Stable method of decoding interferograms with step-by-step shift]. Komp’yut. optika, 2007, Vol. 31, No. 2, pp. 21–25.
     
  21. Dvoinishnikov S. V., Meledin V. G. Sposob beskontaktnogo izmereniya lineinykh razmerov trekhmernykh ob’ektov [A method for non-contact measurement of linear dimensions of three-dimensional objects]. Russian Patent, No. 2433372, prioritet 10.11.11.
     
  22. Dvoinishnikov S. V., Meledin V. G. Sposob beskontaktnogo izmereniya geometrii trekhmernykh ob’ektov [A method for non-contact measurement of the geometry of three-dimensional objects]. Russian Patent, No. 2439489, prioritet 15.09.2010