Численное моделирование эластической турбулентности в ограниченной двумерной ячейке
Численное моделирование эластической турбулентности в ограниченной двумерной ячейке
Аннотация:
Описана численная модель, аппроксимирующая систему уравнений вязкой жидкости с примесью полимерных молекул. Данная модель является гибридной и основана на применении годуновской линеаризованной и конечно-разностной схем. По этой схеме посчитана задача колмогоровского типа – вязкое течение в ограниченной области (квадратной ячейке) под действием внешней периодической силы. Сравнивается течение с примесью и без, изучено поведение полимерных молекул в различных областях потока. Получен некий переходной режим, характеризующийся практически полной растянутостью молекул в областях высокого градиента скорости.
Литература:
- Bird R. B., Armstrong R. C., Hassager O. Dynamics of Polymeric Liquids. Fluid Mechanics. V. 1. Wiley, 1977.
- Groisman A., Steinberg V. Elastic turbulence in a polymer solution flow // Nature. 2000. N 405. P. 53–55.
- Groisman A., Steinberg V. Efficient mixing at low Reynolds numbers using polymer additives // Nature. 2001. N 410. P. 905–908.
- Groisman A., Steinberg V. Elastic turbulence in curvilinear flows of polymer solutions // New J. Phys. 2004. N 6. P. 29.
- Gerashchenko S., Chevallard C., Steinberg V. Single-polymer dynamics: coil-stretch transition in a random flow // Europhys. Lett. 2005. N 71. P. 221—227.
- Burghelea T., Segre E., Steinberg V. Role of elastic stress in statistical and scaling properties of elastic turbulence // Phys. Rev. Lett. 2006. N 96. Article 214502.
- Burghelea T., Segre E., Steinberg V. Elastic turbulence in von Karman swirling flow between two disks // Phys. Fluids. 2007. N 19. Article 053104.
- Balkovsky E., Fouxon A., Lebedev A. Turbulent dynamics of polymer solutions // Phys. Rev. Lett. 2000. N 84. P. 4765–4768.
- Chertkov M. Polymer stretching by turbulence // Phys. Rev. Lett. 2000. N 84. P. 4761–4764.
- Fouxon A., Lebedev V. Spectra of turbulence in dilute polymer solutions // Phys. Fluids. 2003. N 15. P. 2060–2072.
- Pan L., Morozov A., Wagner C., Arratia P. E. Nonlinear elastic instability in channel flows at low Reynolds numbers // Phys. Rev. Lett. 2013. N 110. Article 174502.
- Bodiguel H., Beaumont J., Machado A., Martinie L., Kellay H.,Colin A. Flow enhancement due to elastic turbulence in channel flows of shear thinning fluids // Phys. Rev. Lett. 2015. N 114. Article 028302.
- Berti S., Bistagnino A., Boffetta G., Celani A., Musacchio S. Two-dimensional elastic turbulence // Phys. Rev. E. 2008. N 77. Article 055306(R).
- Berti S., Boffetta G. Elastic waves and transition to elastic turbulence in a two-dimensional viscoelastic Kolmogorov flow // Phys. Rev. E. 2010. N 82. Article 036314.
- Anupam Gupta, Dario Vincenzi Effect of polymer-stress diffusion in the numerical simulation of elastic turbulence // J. Fluid Mech. 2019. N 870. P. 405–418.
- Godunov S., Denisenko V., Klyuchinskiy D., Fortova S., Shepelev V. Study of entropy properties of a linearized version of Godunov’s method // Comput. Math. Math. Phys. 2020. V. 60, N 8. P. 628–640.
Работа выполнена при финансовой поддержке Минобрнауки РФ (проект AAAA-A19-119041590048-0).
В. В. Денисенко
- Институт автоматизации проектирования РАН,
ул. 2-я Брестcкая, 19/18, г. Москва 123056, Россия
E-mail: ned13@rambler.ru
С. В. Фортова
- Институт автоматизации проектирования РАН,
ул. 2-я Брестcкая, 19/18, г. Москва 123056, Россия
E-mail: sfortova@mail.ru
Статья поступила 22.08.2022 г.
После доработки — 22.08.2022 г.
Принята к публикации 29.09.2022 г.
Abstract:
A numerical model that approximates the system of equations of a viscous fluid with the use of polymeric molecules is described. This model is hybrid and is based on the application of Godunov linearized and finite-difference schemes. This scheme is used to calculate a Kolmogorov-type problem - a viscous flow in a confined area (a square cell) under the action of an external periodic force. The flow with and without impurity is compared, the behavior of polymer molecules in different flow regions is studied. A transition regime characterized by almost complete stretching of molecules in regions of high velocity gradient is obtained.
References:
- Bird R. B., Armstrong R. C., Hassager O. Dynamics of Polymeric Liquids. Fluid Mechanics. V. 1. Wiley, 1977.
- Groisman A., Steinberg V. Elastic turbulence in a polymer solution flow. Nature, 2000, No. 405, pp. 53–55.
- Groisman A., Steinberg V. Efficient mixing at low Reynolds numbers using polymer additives. Nature, 2001, No. 410, pp. 905–908.
- Groisman A., Steinberg V. Elastic turbulence in curvilinear flows of polymer solutions. New J. Phys., 2004, No. 6, pp. 29.
- Gerashchenko S., Chevallard C., Steinberg V. Single-polymer dynamics: coil-stretch transition in a random flow. Europhys. Lett., 2005, No. 71, pp. 221–227.
- Burghelea T., Segre E., Steinberg V. Role of elastic stress in statistical and scaling properties of elastic turbulence. Phys. Rev. Lett., 2006, No. 96, article 214502.
- Burghelea T., Segre E., Steinberg V. Elastic turbulence in von Karman swirling flow between two disks. Phys. Fluids, 2007, No. 19, article 053104.
- Balkovsky E., Fouxon A., Lebedev A. Turbulent dynamics of polymer solutions. Phys. Rev. Lett., 2000, No. 84, pp. 4765–4768.
- Chertkov M. Polymer stretching by turbulence. Phys. Rev. Lett., 2000, No. 84, pp. 4761–4764.
- Fouxon A., Lebedev V. Spectra of turbulence in dilute polymer solutions. Phys. Fluids, 2003, No. 15, pp. 2060–2072.
- Pan L., Morozov A., Wagner C., Arratia P. E. Nonlinear elastic instability in channel flows at low Reynolds numbers. Phys. Rev. Lett., 2013, No. 110, article 174502.
- Bodiguel H., Beaumont J., Machado A., Martinie L., Kellay H., Colin A. Flow enhancement due to elastic turbulence in channel flows of shear thinning fluids. Phys. Rev. Lett., 2015, No. 114, article 028302.
- Berti S., Bistagnino A., Boffetta G., Celani A., Musacchio S. Two-dimensional elastic turbulence. Phys. Rev. E, 2008, No. 77, article 055306(R).
- Berti S., Boffetta G. Elastic waves and transition to elastic turbulence in a two-dimensional viscoelastic Kolmogorov flow. Phys. Rev. E, 2010, No. 82, article 036314.
- Anupam Gupta, Dario Vincenzi Effect of polymer-stress diffusion in the numerical simulation of elastic turbulence. J. Fluid Mech., 2019, No. 870, pp. 405–418.
- Godunov S., Denisenko V., Klyuchinskiy D., Fortova S., Shepelev V. Study of entropy properties of a linearized version of Godunov’s method. Comput. Math. Math. Phys., 2020, Vol. 60, No. 8, pp. 628–640.