Трёхмерное моделирование однофазных и многофазных течений в микроканалах с неровностями
Трёхмерное моделирование однофазных и многофазных течений в микроканалах с неровностями
Аннотация:
Для прогнозирования поведения пластовых жидкостей в пористой среде и их исследования на макроуровне необходимо детальное изучение гидродинамических потоков в пористой среде в микромасштабе на уровне отдельных поровых пространств, принимая во внимание их структурные особенности. В рамках данной работы рассматривается периодическое течение вязкой несжимаемой жидкости и дисперсной системы в плоском канале прямоугольного сечения с неровными стенками при постоянном перепаде давления. С использованием эффективного численного подхода на основе трёхмерного метода граничных элементов, ускоренного быстрым методом мультиполей на гетерогенных вычислительных архитектурах, выполнены исследования влияния неровностей различного размера и формы на стенках микроканалов на гидродинамические потоки при течении вязкой жидкости и на динамику капель эмульсии в капиллярной микромодели пористой среды. Результаты работы могут быть полезны также при конструировании микрофлюидных устройств.
Литература:
- Kovaleva L.A., Musin A.,A., Zinnatullin R.R., Akhatov I.Sh. Destruction of water-in-oil emulsions in electromagnetic fields // ASME 2011 Internat. Mech. Engrg. Congress and Exposition. IMECE, 2011. V. 6. P. 617–621; https://doi.org/10.1115/imece2011-62935
- Kovaleva L.A., Musin A.,A., Fatkhullina Yu.I. Microwave heating of an emulsion drop // High Temperature. 2018. V. 56, N 2. P. 234–238; https://doi.org/10.1134/S0018151X18020141
- Abramova O.A., Pityuk Yu.A., Gumerov N.A., Akhatov I.S An efficient method for simulation of the dynamics of a large number of deformable droplets in the stokes regime // Dokl. Phys. 2014. V. 59, N 5. P. 236–240; https://doi.org/10.1134/S102833581405005X
- Roca J.F., Carvalho M.S Flow of a drop through a constricted microcapillary // Comput. Fluids. 2013. V. 87. P. 50–56; https://doi.org/10.1016/j.compfluid.2012.11.020
- Wrobel L.C., Soares D., Bhaumik C.L. Drop deformation in Stokes flow through converging channels // Engrg. Analysis with Boundary Elements. 2009. V. 33, N 7. P. 993–1000; https://doi.org/10.1016/j.enganabound.2009.01.009
- Yin B., Luo H. Numerical simulation of drops inside an asymmetric microchannel with protrusions // Comput. Fluids. 2013. V. 82. P. 14–28; https://doi.org/10.1016/j.compfluid.2013.05.005
- Сивак С.А., Рояк М.Э., Ступаков И.М. Использование метода быстрых мультиполей при оптимизации метода граничных элементов для решения уравнения Гельмгольца // Сиб. журн. индустр. математики. 2021. Т. 24, № 3. С. 83–100; https://doi.org/10.33048/SIBJIM.2021.24.307
- Gumerov N. A., Duraiswami R. Fast multipole methods on graphics processors // J. Comput. Phys. 2008. V. 227, N 18. P. 8290–8313; https://doi.org/10.1016/j.jcp.2008.05.023
- Rawool A., Mitra S.K., Kandlikar S.G. Numerical simulation of flow through microchannels with designed roughness // Microfluidics and Nanofluidics. 2006. V. 2, N 3. P. 215–221; https://doi.org/10.1007/s10404-005-0064-5
- Li Z., Wan J., Zhan H., He L., Huang K. An energy perspective of pore scale simulation and experimental evidence of fluid flow in a rough conduit // J. Hydrol. 2020. V. 587. Article 125010; https://doi.org/10.1016/j.jhydrol.2020.125010
- Taylor J.B., Carrano A.L., Kandlikar S.G. Characterization of the effect of surface roughness and texture on fluid flow — past, present, and future // Internat. J. Thermal Sci. 2006. V. 45, N 10. P. 962–968; https://doi.org/10.1016/j.ijthermalsci.2006.01.004
- Pozrikidis C. Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge: Univ. Press, 1992.
- Ладыженская О.А. Математические вопросы динамики вязкой несжимаемой жидкости. М.: Наука, 1970.
- Saad Y. Iterative Methods for Sparse Linear System. Philadelphia: SIAM, 2000.
- Itkulova Y.A., Solnyshkina O.A., Gumerov N.A. Toward large scale simulations of emulsion flows in microchannels using fast multipole and graphics processor accelerated boundary element method // ASME 2012 Internat. Mech. Engrg. Congress and Exposition. 2012. P. 873–881; http://dx.doi.org/10.1115/IMECE2012-86238
- Spurk J.H., Aksel H. Fluid Mechanics. Berlin; Heidelberg: Springer-Verl., 2008
- Solnyshkina O.A., Fatkullina N.B., Bulatova A.Z. Three-dimensional simulation of drop motion in channels of different cross-sections // J. Phys. Conf. Ser. 2020. V. 1675. Article 012099; https://doi.org/10.1088/1742-6596/1675/1/012099
Работа выполнена при финансовой поддержке Российского научного фонда (проект 21-79-10212).
О. А. Солнышкина
- Уфимский университет науки и технологий,
ул. Заки Валиди, 32, г. Уфа 450076, Россия
E-mail: olgasolnyshkina@gmail.com
Н. Б. Фаткуллина
- Уфимский университет науки и технологий,
ул. Заки Валиди, 32, г. Уфа 450076, Россия
E-mail: nazgulbay@mail.ru
А. З. Булатова
- Уфимский университет науки и технологий,
ул. Заки Валиди, 32, г. Уфа 450076, Россия
E-mail: bulatova29@yandex.ru
Статья поступила 27.07.2022 г.
После доработки — 27.07.2022 г.
Принята к публикации 29.09.2022 г.
Abstract:
To predict the behavior of reservoir fluids in porous media and their investigation at the macro level, it is necessary to study in details the hydrodynamic flows in porous media at the microscale from the point of view of the individual pore spaces, taking into account their structural features. This work is dedicated to the investigation of the periodic flow of a viscous incompressible fluid and dispersed systems in a flat channel of rectangular cross section with irregular side walls at a constant pressure drop. Using an efficient numerical approach based on the 3D boundary element method accelerated by the fast multipole method on heterogeneous computing architectures, the influence of irregularities of different sizes and shapes on the microchannel walls on the hydrodynamic flows of the viscous fluid flow and the emulsion droplet dynamics in a capillary micro-model of the porous medium has been studied. The results of this work can also be useful in the design of microfluidic devices.
References:
- Kovaleva L.A., Musin A.,A., Zinnatullin R.R., Akhatov I.Sh. Destruction of water-in-oil emulsions in electromagnetic fields. ASME 2011 Internat. Mech. Engrg. Congress and Exposition. IMECE, 2011, Vol. 6, pp. 617–621; https://doi.org/10.1115/imece2011-62935
- Kovaleva L.A., Musin A.,A., Fatkhullina Yu.I. Microwave heating of an emulsion drop. High Temperature, 2018, Vol. 56, No. 2, pp. 234–238; https://doi.org/10.1134/S0018151X18020141
- Abramova O.A., Pityuk Yu.A., Gumerov N.A., Akhatov I.S An efficient method for simulation of the dynamics of a large number of deformable droplets in the stokes regime. Dokl. Phys., 2014, Vol. 59, No. 5, pp. 236–240; https://doi.org/10.1134/S102833581405005X
- Roca J.F., Carvalho M.S Flow of a drop through a constricted microcapillary. Comput. Fluids, 2013, Vol. 87, pp. 50–56; https://doi.org/10.1016/j.compfluid.2012.11.020
- Wrobel L.C., Soares D., Bhaumik C.L. Drop deformation in Stokes flow through converging channels. Engrg. Analysis with Boundary Elements, 2009, Vol. 33, No. 7, pp. 993–1000; https://doi.org/10.1016/j.enganabound.2009.01.009
- Yin B., Luo H. Numerical simulation of drops inside an asymmetric microchannel with protrusions. Comput. Fluids, 2013, Vol. 82, pp. 14–28; https://doi.org/10.1016/j.compfluid.2013.05.005
- Sivak S.A., Royak M.E., Stupakov I.M. Ispol’zovanie metoda bystrykh mul’tipolei pri optimizatsii metoda granichnykh elementov dlya resheniya uravneniya Gel’mgol’tsa [Using the fast multipole method in optimizing the boundary element method for solving the Helmholtz equation]. Sib. Zhurn. Industr. Mat., 2021, Vol. 24, No. 3, pp. 83–100 (in Russian); https://doi.org/10.33048/SIBJIM.2021.24.307.
- Gumerov N. A., Duraiswami R. Fast multipole methods on graphics processors. J. Comput. Phys., 2008, Vol. 227, No. 18, pp. 8290–8313; https://doi.org/10.1016/j.jcp.2008.05.023
- Rawool A., Mitra S.K., Kandlikar S.G. Numerical simulation of flow through microchannels with designed roughness. Microfluidics and Nanofluidics, 2006, Vol. 2, No. 3, pp. 215–221; https://doi.org/10.1007/s10404-005-0064-5
- Li Z., Wan J., Zhan H., He L., Huang K. An energy perspective of pore scale simulation and experimental evidence of fluid flow in a rough conduit. J. Hydrol., 2020, Vol. 587, article 125010; https://doi.org/10.1016/j.jhydrol.2020.125010
- Taylor J.B., Carrano A.L., Kandlikar S.G. Characterization of the effect of surface roughness and texture on fluid flow — past, present, and future. Internat. J. Thermal Sci., 2006, Vol. 45, No. 10, pp. 962–968; https://doi.org/10.1016/j.ijthermalsci.2006.01.004
- Pozrikidis C. Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge: Univ. Press, 1992.
- Ladyzhenskaya O.A. Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti [Mathematical problems of the dynamics of a viscous incompressible fluid]. Moscow: Nauka, 1970 (in Russian).
- Saad Y. Iterative Methods for Sparse Linear System. Philadelphia: SIAM, 2000.
- Itkulova Y.A., Solnyshkina O.A., Gumerov N.A. Toward large scale simulations of emulsion flows in microchannels using fast multipole and graphics processor accelerated boundary element method. ASME 2012 Internat. Mech. Engrg. Congress and Exposition, 2012, pp. 873–881; http://dx.doi.org/10.1115/IMECE2012-86238
- Spurk J.H., Aksel H. Fluid Mechanics. Berlin; Heidelberg: Springer-Verl., 2008
- Solnyshkina O.A., Fatkullina N.B., Bulatova A.Z. Three-dimensional simulation of drop motion in channels of different cross-sections. J. Phys. Conf. Ser., 2020, Vol. 1675, article 012099; https://doi.org/10.1088/1742-6596/1675/1/012099.