Численное исследование структуры турбулентного течения и теплообмена в плоском канале с гексагональными сотами различной глубины
Численное исследование структуры турбулентного течения и теплообмена в плоском канале с гексагональными сотами различной глубины
Аннотация:
Представлены результаты численного расчёта методом RANS отрывного течения в плоском канале при наличии сотовой поверхности. Расчёт выполнен при числах Рейнольдса $(14 000 \le Re \le 28 000)$, определённых по среднемассовой скорости и высоте канала. Получено распределение локального числа Нуссельта при различных числах Рейнольдса и глубине сот. Показано, что распределение числа Нуссельта на поверхности сильно неравномерное, в частности, максимальная величина теплоотдачи наблюдается вблизи верхней грани рёбер, в окрестности которой наблюдается наибольший градиент скорости.
Литература:
- Isaev S.A., Kornev N.V., Leontiev A.I., Hassel E. Influence of the Reynolds number and the spherical dimple depth on turbulent heat transfer and hydraulic loss in a narrow channel // Internat. J. Heat Mass Transf. 2019. V. 53. P. 178–197.
- Wang S., Du W., Luo L., Qiu D., Zhang X., Li S. Flow structure and heat transfer characteristics of a dimpled wedge channel with a bleed hole in dimple at different orientations and locations // Internat. J. Heat Mass Transf. 2018. V. 117. P. 1216–1230.
- Shen Z., Qu H., Zhang D., Xie Y. Effect of bleed hole on flow and heat transfer performance of $U$-shaped channel with dimple structure // Internat. J. Heat Mass Transf. 2013. V. 66. P. 10–22.
- Weihing P., Younis B.A., Weigand B. Heat transfer enhancement in a ribbed channel: Development of turbulence closures // Internat. J. Heat Mass Transf. 2014. V. 76. P. 509–522.
- Motoki T., Ohno Y., Hishida M., Tanaka G. Augmentation of heat transportation by an oscillatory flow in grooved ducts // Heat Transfer — Asian Research. 2008. V. 37, N 2. P. 68–85.
- Leonardi S., Orlandi P.,Antonia R.A. Properties of $d$- and $k$-type roughness in a turbulent channel flow // Phys. Fluids. 2007. V. 19. P. 125101.
- Bogatko T., Terekhov V., Dyachenko A., Smulsky Ya. Heat transfer behind the backward-facing step under the influence of longitudinal pressure gradient // MATEC Web of Conf. 2017. V. 92. Article 01030.
- Saha K., Acharya S., Nakamata C. Heat transfer enhancement and thermal performance of lattice structures for internal cooling of airfoil trailing edges // J. Thermal Sci. Engrg. Appl. 2013. V. 5. Article 011001-1.
- Wong T.T., Leung C.W., Li Z.Y., Tao W.Q. Turbulent convection of air-cooled rectangular duct with surface-mounted cross-ribs // Internat. J. Heat Mass Transf. 2003. V. 46. P. 4629–4638.
- Zimmerer C., Gschwind P., Gaiser G., Kottke V. Comparison of heat and mass transfer in different heat exchanger geometries with corrugated walls // Experiment. Thermal Fluid Sci. 2002. V. 26. P. 269–273.
- Du W., Luo L., Wang S., Liu J., Sunden B. Heat transfer and flow structure in a detached latticework duct // Appl. Thermal Engrg. 2019. V. 155. P. 24–39.
- Климов A.A., Трдатьян C. A. Использование сотовой поверхности для управления пограничным слоем // Теплофизика высоких температур. 2003. T. 155, № 6. С. 901–906.
- Ковальногов H.H. Модель турбулентного переноса в пограничном слое на перфорированной поверхности с глухими демпфирующими полостями // Изв. вузов. Проблемы энергетики. 2003. № 5–6. C. 41–47.
- Терехов В.И., Смульский Я.И., Шаров К.А., Золотухин А.В. Структура пограничного слоя при обтекании сотовой поверхности в плоском канале // Теплофизика и аэромеханика. 2014. T. 21, № 6. С. 733–738.
- Durbin P.A. Near-wall turbubulence closure modeling without «damping function» // Theor. Comput. Fluid Dynamics. 1991. V. 3. P. 1-13.
- Barsukov A.V., Terekhov V.V., Terekhov V.I. Numerical simulation of flow dynamics and heat transfer in a rectangular channel with periodic ribs on one of one of the walls // J. Phys. Conf. Ser. 2021. V. 2119. P. 012028.
- Terekhov V.I., Yarygina N.I. Forced convection heat transfer from the bottom of trenches with rectangular or inclined walls // Experiment. Heat Transfer. 1996. V. 9. P. 133–148.
- Dyachenko A.Yu., Terekhov V.I., Yarygina N.I. Vortex formation and heat transfer in turbulent flow past a transverse cavity with inclined frontal and rear walls // Internat. J. Heat Mass Transf. 2008. V. 51, N 13–14. P. 3275–3286.
- Terekhov V.I., Kalinina S.V., Mshvidobadze Yu.M. Heat transfer coefficient and aerodynamical resistance on a surface with a singe dimple // Enhanced Heat Transf. 1997. V. 4, N 2. P. 131–145.
Работа выполнена при финансовой поддержке Российского научного фонда (проект 21-19-00162).
А. В. Барсуков
- Институт теплофизики им. С. С. Кутателадзе СО РАН,
просп. Акад. Лаврентьева, 1, г. Новосибирск 630090, Россия
E-mail: andreybarsukov96@gmail.com
В. В. Терехов
- Институт теплофизики им. С. С. Кутателадзе СО РАН,
просп. Акад. Лаврентьева, 1, г. Новосибирск 630090, Россия
E-mail: vt@itp.nsc.ru
В. И. Терехов
- Институт теплофизики им. С. С. Кутателадзе СО РАН,
просп. Акад. Лаврентьева, 1, г. Новосибирск 630090, Россия
E-mail: terekhov@itp.nsc.ru
Статья поступила 09.08.2022 г.
После доработки — 09.08.2022 г.
Принята к публикации 29.09.2022 г
Abstract:
The results of a numerical simulation by the RANS method of a separated flow in a flat channel with honeycomb surface are presented. The simulation was performed at the Reynolds $Re = 14 000 – 28 000$ determined from the average mass velocity and channel height. The distribution of the local Nusselt number was obtained for various Reynolds numbers and honeycomb depths. It is shown that the distribution of the Nusselt number on the surface is highly non-uniform, in particular, the maximum heat transfer is observed near the upper edge of the ribs, in the vicinity of which the largest velocity gradient is observed.
References:
- Isaev S.A., Kornev N.V., Leontiev A.I., Hassel E. Influence of the Reynolds number and the spherical dimple depth on turbulent heat transfer and hydraulic loss in a narrow channel. Internat. J. Heat Mass Transf., 2019, Vol. 53, pp. 178–197.
- Wang S., Du W., Luo L., Qiu D., Zhang X., Li S. Flow structure and heat transfer characteristics of a dimpled wedge channel with a bleed hole in dimple at different orientations and locations. Internat. J. Heat Mass Transf., 2018, Vol. 117, pp. 1216–1230.
- Shen Z., Qu H., Zhang D., Xie Y. Effect of bleed hole on flow and heat transfer performance of $U$-shaped channel with dimple structure. Internat. J. Heat Mass Transf., 2013, Vol. 66, pp. 10–22.
- Weihing P., Younis B.A., Weigand B. Heat transfer enhancement in a ribbed channel: Development of turbulence closures. Internat J. Heat Mass Transf., 2014, Vol. 76, pp. 509–522.
- Motoki T., Ohno Y., Hishida M., Tanaka G. Augmentation of heat transportation by an oscillatory flow in grooved ducts. Heat Transfer — Asian Research, 2008, Vol. 37, No. 2, pp. 68–85.
- Leonardi S., Orlandi P.,Antonia R.A. Properties of $d$- and $k$-type roughness in a turbulent channel flow. Phys. Fluids, 2007, Vol. 19, pp. 125101.
- Bogatko T., Terekhov V., Dyachenko A., Smulsky Ya. Heat transfer behind the backward-facing step under the influence of longitudinal pressure gradient. MATEC Web of Conf., 2017, Vol. 92, article 01030.
- Saha K., Acharya S., Nakamata C. Heat transfer enhancement and thermal performance of lattice structures for internal cooling of airfoil trailing edges. J. Thermal Sci. Engrg. Appl., 2013, Vol. 5, article 011001-1.
- Wong T.T., Leung C.W., Li Z.Y., Tao W.Q. Turbulent convection of air-cooled rectangular duct with surface-mounted cross-ribs. Internat. J. Heat Mass Transf., 2003, Vol. 46, pp. 4629–4638.
- Zimmerer C., Gschwind P., Gaiser G., Kottke V. Comparison of heat and mass transfer in different heat exchanger geometries with corrugated walls. Experiment. Thermal Fluid Sci., 2002, Vol. 26, pp. 269–273.
- Du W., Luo L., Wang S., Liu J., Sunden B. Heat transfer and flow structure in a detached latticework duct. Appl. Thermal Engrg., 2019, Vol. 155, pp. 24–39.
- Klimov A.A., Trdatyan S.A. The use of a honeycomb surface for controlling the boundary layer. High Temperature, 2003, Vol. 41, pp. 801–806.
- Koval’nogov H.H. Model’ turbulentnogo perenosa v pogranichnom sloe na perforirovannoi poverkhnosti s glukhimi dempfiruyushchimi polostyami [Model’ turbulentnogo perenosa v pogranichnom sloe na perforirovannoi poverkhnosti s glukhimi dempfiruyushchimi polostyami]. Izv. Vuzov. Problemy Energetiki, 2003, No. 5–6, pp. 41–47 (in Russian).
- Terekhov V.I., Smulsky Ya.I., Sharov K.A., Zolotukhin A.V. Boundary-layer structure in the flow around the cellular surface in a flat channel. Thermophysics and Aeromechanics, 2014, Vol. 21, pp. 701–706.
- Durbin P.A. Near-wall turbubulence closure modeling without «damping function». Theor. Comput. Fluid Dynamics, 1991, Vol. 3, pp. 1-13.
- Barsukov A.V., Terekhov V.V., Terekhov V.I. Numerical simulation of flow dynamics and heat transfer in a rectangular channel with periodic ribs on one of one of the walls. J. Phys. Conf. Ser., 2021, Vol. 2119, pp. 012028.
- Terekhov V.I., Yarygina N.I. Forced convection heat transfer from the bottom of trenches with rectangular or inclined walls. Experiment. Heat Transf., 1996, Vol. 9, pp. 133–148.
- Dyachenko A.Yu., Terekhov V.I., Yarygina N.I. Vortex formation and heat transfer in turbulent flow past a transverse cavity with inclined frontal and rear walls. Internat. J. Heat Mass Transf., 2008, Vol. 51, No. 13–14, pp. 3275–3286.
- Terekhov V.I., Kalinina S.V., Mshvidobadze Yu.M. Heat transfer coefficient and aerodynamical resistance on a surface with a singe dimple. Enhanced Heat Transf., 1997, Vol. 4, No. 2, pp. 131–145.