Нелокальная обратная задача по определению неизвестного коэффициента в уравнении колебания балки
Нелокальная обратная задача по определению неизвестного коэффициента в уравнении колебания балки
Аннотация:
Проведено исследование прямой задачи для колебания однородной балки конечной длины с нелокальными по времени условиями. Получены необходимое и достаточное условия существования решения прямой задачи. Изучается обратная задача по определению коэффициента, зависящего от времени при младшей производной. С помощью собственных чисел и собственных функций задача сводится к системе интегральных уравнений. С помощью принципа Банаха показаны существование и единственность решения обратных задач.
Литература:
- Тихонов А.Н., Самарский A.A. Уравнения математической физики. M.: Наука, 1966.
- Крылов А.Н. Вибрация судов. Л.; М.: ОНТИ НКТП СССР, 1936.
- Гусев Б.В., Саурин В.В. О колебаниях неоднородных балок // Инж. вестн. Дона. 2017; http://ivdon.ru/ru/magazine/archive/n3y2017/4312
- Sabitov K.B. A remark on the theory of initial-boundary value problems for the equation of rods and beams // Differ. Equ. 2017. V. 53, N 1. P. 89–100; DOI: 10.1134/S0012266117010086
- Sabitov K.B. Initial–boundary value problems for the beam vibration equation with allowance for its rotational motion under bending // Differ. Equ. 2021. V. 57, N 3. P. 342–352; DOI: 10.1134/S0012266121030071
- Сабитов К.Б., Фадеева О.В. Начально-граничная задача для уравнения вынужденных колебаний консольной балки // Вестн. Самар. гос. ун-та. Сер. Физ.-мат. науки. 2021. Т. 25, № 1. С. 51—66; DOI: https://doi.org/10.14498/vsgtu1845
- Baysal O., Hasanov A. Solvability of the clamped Euler—Bernoulli beam equation // Appl. Math. Lett. 2019. V. 93. P. 85–90; https://doi.org/10.1016/j.aml.2019.02.006
- Durdiev U.D. Inverse problem of determining an unknown coefficient in the beam vibration equation // Differ. Equ. 2022. V. 58, N 1. P. 37–44; DOI: 10.1134/S0012266122010050
- Tan G., Shan J., Wu Ch., Wang W. Direct and inverse problems on free vibration of cracked multiple I-section beam with different boundary conditions // Adv. Mech. Engrg. 2017. V. 9, N 11. P. 1–17; DOI: 10.1177/1687814017737261
- Moaveni S., Hyde R. Reconstruction of the area-moment-of-inertia of a beam using a shifting load and the end-slope data // Inverse Probl. Sci. Engrg. 2016. V. 24, N 6. P. 990–1010; DOI: 10.1080/17415977.2015.1088539
- Chang J.D., Guo B.Z. Identification of variable spacial coefficients for a beam equation from boundary measurements // Automatica. 2007. V. 43. P. 732–737; DOI: 10.1016/j.automatica.2006.11.002
- Huang Ch.H., Shih Ch.Ch. An inverse problem in estimating simultaneously the time-dependent applied force and moment of an Euler—Bernoulli beam // CMES. 2007. V. 21, N 3. P. 239–254.
- Maciag A., Pawinska A. Solution of the direct and inverse problems for beam // Comput. Appl. Math. 2016. V. 35. P. 187–201; DOI 10.1007/s40314-014-0189-9
- Maciag A., Pawinska A. Solving direct and inverse problems of plate vibration by using the Trefftz functions // J. Theor. Appl. Mech. 2013. V. 51, N 3. P. 543–552.
- Карчевский А.Л. Аналитические решения дифференциального уравнения поперечных колебаний кусочно-однородной балки в частотной области для краевых условий любого вида // Сиб. журн. индустр. математики. 2020. Т. 23, № 4. С. 48—68; DOI: 10.33048/SIBJIM.2020.23.404
- Романов В.Г. Обратные задачи математической физики. М.: Наука, 1984.
- Дурдиев Д.К., Тотиева Ж.Д. Задача об определении одномерного ядра уравнения электровязкоупругости // Сиб. мат. журн. 2017. Т. 58, № 3. С. 553–572; DOI: https://doi.org/10.17377/smzh.2017.58.307
- Дурдиев Д.К., Рахмонов А.А. Задача об определении двумерного ядра в системе интегродифференциальных уравнений вязкоупругой пористой среды // Сиб. журн. индустр. математики. 2020. Т. 23, № 2. С. 63–80; DOI: https://doi.org/10.33048/SIBJIM.2020.23.205
- Durdiev U.D. A problem of identification of a special 2D memory kernel in an integro-differential hyperbolic equation // Euras. J. Math. Comput. Appl. 2019. V. 7, N 2. P. 4–19; DOI: 10.32523/2306-6172-2019-7-2-4-19
- Durdiev U.D., Totieva Zh.D. A problem of determining a special spatial part of 3D memory kernel in an integro-differential hyperbolic equation // Math. Meth. Appl. Sci. 2019. V. 42, N 18. P. 7440–7451; DOI: 10.1002/mma.5863
- Durdiev D.K., Zhumaev Zh.Zh. Memory kernel reconstruction problems in the integro-differential equation of rigid heat conductor // Math. Meth. Appl. Sci. 2022. V. 45, N 14. P. 8374–8388; DOI: 10.1002/mma.7133
- Durdiev D.K., Zhumaev Zh.Zh. One-dimensional inverse problems of finding the kernel of integrodifferential heat equation in a bounded domain // Ukr. Math. J. 2022. V. 73, N 11. P. 1723–1740; DOI: 10.1007/s11253-022-02026-0
- Карчевский А.Л., Фатьянов А.Г. Численное решение обратной задачи для системы упругости с последействием для вертикально неоднородной среды // Сиб. журн. вычисл. математики. 2001. Т. 4, № 3. С. 259–268.
- Карчевский А.Л. Определение возможности горного удара в угольном пласте // Сиб. журн. индустр. математики. 2017. Т. 20, № 4. С. 35–43; DOI: https://doi.org/10.17377/sibjim.2017.20.405
- Дурдиев У.Д. Численное определение зависимости диэлектрической проницаемости слоистой среды от временной частоты // Сиб. электрон. мат. изв. 2020. Т. 17. C. 179–189; DOI: 10.33048/semi.2020.17.013
- Megraliev Ya.T., Azizbayov E.I. A time-nonlocal inverse problem for a hyperbolic equation with an integral overdetermination condition // Electron. J. Qual. Theory Differ. Equ. 2021. N 28. P. 1–12; https://doi.org/10.14232/ejqtde.2021.1.28
- Pachpette B. Integral and Finite Difference Inequalities and Applications. Elsevier, 2006 (North-Holland Mathematics Studies).
- Худавердиев К.И., Велиев А. А. Исследование одномерной смешанной задачи для одного класса псевдогиперболических уравнений третьего порядка с нелинейной операторной правой частью. Баку: Чашыоглы, 2010.
- Tekin I., Mehraliyev Y. T., Ismailov M. I. Existence and uniqueness of an inverse problem for nonlinear Klein—Gordon equation // Math. Meth. Appl. Sci. 2019. V. 42, N 10. P. 3739–3753; https://doi.org/10.1002/mma.5609
Работа выполнена при финансовой поддержке Минобрнауки РФ (соглашение 075-02-2022-890).
У. Д. Дурдиев
- Бухарский государственный университет,
ул. М. Икбол, 11, г. Бухара 200117, Узбекистан - Бухарское отделение института математики им. В. И. Романовского,
ул. М. Икбол, 11, г. Бухара 200117, Узбекистан
E-mail: umidjan93@mail.ru, bu.d.durdiev@buxdu.uz
З. Р. Бозоров
- Бухарское отделение института математики им. В. И. Романовского,
ул. М. Икбол, 11, г. Бухара 200117, Узбекистан
E-mail: zavqiddinbozorov2011@mail.ru
Статья поступила 22.10.2022 г.
После доработки — 01.11.2022 г.
Принята к публикации 12.01.2023 г.
Abstract:
The article is devoted to the study of the direct problem for the oscillation of a homogeneous beam of finite length with non-local time conditions. Necessary and sufficient conditions for the existence of a solution to the direct problem are obtained. For the direct problem, we study the inverse problem of determining the time-dependent coefficient at the lowest derivative. Using eigenvalues and eigenfunctions, the problem is reduced to a system of integral equations. With the help of the Banach principle, the existence and uniqueness of the solution of inverse problems are shown.
References:
- Tikhonov A.N., Samarskii A.A. Uravneniya matematicheskoi fiziki [Equations of mathematical physics], Moscow: Nauka, 1966 (in Russian).
- Krylov A.N. Vibratsiya sudov [Vibration of ships], Moscow: ONTI, 2012 (in Russian).
- Gusev B.V., Saurin V.V. O kolebaniyakh neodnorodnykh balok [On vibrations of inhomogeneous beams]. Engrg. J. Don, 2017 (in Russian); http://ivdon.ru/ru/magazine/archive/n3y2017/4312
- Sabitov K.B. A remark on the theory of initial-boundary value problems for the equation of rods and beams. Differ. Equ., 2017, Vol. 53, No. 1, pp. 89–100; DOI: 10.1134/S0012266117010086
- Sabitov K.B. Initial–boundary value problems for the beam vibration equation with allowance for its rotational motion under bending. Differ. Equ., 2021, Vol. 57, No. 3, pp. 342–352; DOI: 10.1134/S0012266121030071
- Sabitov K.B., Fadeeva O.V. Nachal’no-granichnaya zadacha dlya uravneniya vynuzhdennykh kolebanii konsol’noi balki [Initial-boundary value problem for the equation of forced vibrations of a cantilever beam]. Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ. Ser. Phys. Math. Sci.], 2021, Vol. 25, No 1, pp. 51–66 (in Russian); DOI: https://doi.org/10.14498/vsgtu1845
- Baysal O., Hasanov A. Solvability of the clamped Euler—Bernoulli beam equation. Appl. Math. Lett., 2019, Vol. 93, pp. 85–90; https://doi.org/10.1016/j.aml.2019.02.006
- Durdiev U.D. Inverse problem of determining an unknown coefficient in the beam vibration equation. Differ. Equ., 2022, Vol. 58, No. 1, pp. 37–44; DOI: 10.1134/S0012266122010050
- Tan G., Shan J., Wu Ch., Wang W. Direct and inverse problems on free vibration of cracked multiple I-section beam with different boundary conditions. Adv. Mech. Engrg., 2017, Vol. 9, No. 11, pp. 1–17; DOI: 10.1177/1687814017737261
- Moaveni S., Hyde R. Reconstruction of the area-moment-of-inertia of a beam using a shifting load and the end-slope data. Inverse Probl. Sci. Engrg., 2016, Vol. 24, No. 6, pp. 990–1010; DOI: 10.1080/17415977.2015.1088539
- Chang J.D., Guo B.Z. Identification of variable spacial coefficients for a beam equation from boundary measurements. Automatica, 2007, Vol. 43, pp. 732–737; DOI: 10.1016/j.automatica.2006.11.002
- Huang Ch.H., Shih Ch.Ch. An inverse problem in estimating simultaneously the time-dependent applied force and moment of an Euler—Bernoulli beam. CMES, 2007, Vol. 21, No. 3, pp. 239–254.
- Maciag A., Pawinska A. Solution of the direct and inverse problems for beam. Comput. Appl. Math., 2016, Vol. 35, pp. 187–201; DOI 10.1007/s40314-014-0189-9
- Maciag A., Pawinska A. Solving direct and inverse problems of plate vibration by using the Trefftz functions. J. Theor. Appl. Mech., 2013, Vol. 51, No. 3, pp. 543–552.
- Karchevsky A.L. Analiticheskie resheniya differentsial’nogo uravneniya poperechnykh kolebanii kusochno-odnorodnoi balki v chastotnoi oblasti dlya kraevykh uslovii lyubogo vida [Analytical solutions to the differential equation of transverse vibrations of a piecewise homogeneous beam in the frequency domain for the boundary conditions of various types]. Sib. Zhurn. Indust. Mat., 2020, Vol. 14, No. 4, pp. 648–665 (in Russian); https://doi.org/10.1134/S1990478920040043
- Romanov V.G. Inverse Problems of Mathematical Physics. Utrecht: VNU Science Press, 1987.
- Durdiev D.K., Totieva Zh.D. The problem of determining the one-dimensional kernel of the electroviscoelasticity equation. Sib. Math. J., 2017, Vol. 58, No. 3, pp. 427–444; DOI: 10.1134/S0037446617030077
- Durdiev D.K., Rahmonov A.A. The problem of determining the 2D-kernel in a system of integrodifferential equations of a viscoelastic porous medium. J. Appl. Indust. Math., 2020, Vol. 14, No. 2, pp. 281–295; DOI: 10.1134/S1990478920020076
- Durdiev U.D. A problem of identification of a special 2D memory kernel in an integro-differential hyperbolic equation. Euras. J. Math. Comput. Appl., 2019, Vol. 7, No. 2, pp. 4–19; DOI: 10.32523/2306-6172-2019-7-2-4-19
- Durdiev U.D., Totieva Zh.D. A problem of determining a special spatial part of 3D memory kernel in an integro-differential hyperbolic equation. Math. Meth. Appl. Sci., 2019, Vol. 42, No. 18, pp. 7440–7451; DOI: 10.1002/mma.5863
- Durdiev D.K., Zhumaev Zh.Zh. Memory kernel reconstruction problems in the integro-differential equation of rigid heat conductor. Math. Meth. Appl. Sci., 2022, Vol. 45, No. 14, pp. 8374–8388; DOI: 10.1002/mma.7133
- Durdiev D.K., Zhumaev Zh.Zh. One-dimensional inverse problems of finding the kernel of integrodifferential heat equation in a bounded domain. Ukr. Math. J., 2022, Vol. 73, No. 11, pp. 1723–1740; DOI: 10.1007/s11253-022-02026-0
- Karchevskii A.L., Fat’yanov A.G. Chislennoe reshenie obratnoi zadachi dlya sistemy uprugosti s posledeistviem dlya vertikal’no neodnorodnoi sredy [Numerical solution of the inverse problem for an elasticity system with aftereffect for a vertically inhomogeneous medium]. Sib. Zhurn. Vychisl. Mat., 2001, Vol. 4, No. 3, pp. 259–268 (in Russian).
- Karchevsky A.L. Determination the possibility of a rock burst in a coal seam. J. Appl. Industr. Math., 2017, Vol. 11, No. 4, pp. 527–534; DOI: 10.1134/S199047891704010X
- Durdiev U.D. Chislennoe opredelenie zavisimosti dielektricheskoi pronitsaemosti sloistoi sredy ot vremennoi chastoty [Numerical method for determining the dependence of the dielectric permittivity on the frequency in the equation of electrodynamics with memory]. Sib. Elektron. Mat. Izv., 2020, Vol. 17, pp. 179–189 (in Russian); https://doi.org/10.33048/semi.2020.17.013
- Megraliev Ya.T., Azizbayov E.I. A time-nonlocal inverse problem for a hyperbolic equation with an integral overdetermination condition. Electron. J. Qual. Theory Differ. Equ., 2021, No. 28, pp. 1–12; https://doi.org/10.14232/ejqtde.2021.1.28
- Pachpette B. Integral and Finite Difference Inequalities and Applications. Elsevier, 2006 (North-Holland Math. Studies).
- Khudaverdiev K.I., Veliyev A.A. Issledovanie odnomernoi smeshannoi zadachi dlya odnogo klassa psevdogiperbolicheskikh uravnenii tret’ego poryadka s nelineinoi operatornoi pravoi chast’yu. [Study of a one-dimensional mixed problem for a class of third-order pseudohyperbolic equations with a nonlinear operator right-hand side]. Baku: Chashyollu, 2010 (in Russian).
- Tekin I., Mehraliyev Y. T., Ismailov M. I. Existence and uniqueness of an inverse problem for nonlinear Klein—Gordon equation. Math. Meth. Appl. Sci., 2019, Vol. 42, No. 10, pp. 3739–3753; https://doi.org/10.1002/mma.5609