Определение плотности теплового потока в области контактной линии при испарении жидкости в пузырь

Определение плотности теплового потока в области контактной линии при испарении жидкости в пузырь

Сибиряков Н. Е., Кочкин Д. Ю., Кабов О. А., Карчевский А. Л.

УДК 519.632:519.688:53.043 
DOI: 10.33048/SIBJIM.2023.26.308


Аннотация:

Описывается способ определения плотности теплового потока на поверхности тонкой фольги, недоступной для тепловизионных измерений по данным тепловизионной съёмки другой стороны фольги, доступной для измерений. Математически задача сводится к решению задачи Коши для эллиптического уравнения, которая является некорректной. Задача решается с использованием сглаживания шума в исходном поле температуры и правильном ограничении на количество членов разложения в рядах Фурье. По результатам измерений плотность теплового потока достигает максимума в области контактной линии и соcтавляет 4200 Вт/м2.

Литература:
  1. Kundan A., Plawsky J. L., Wayner P. C. Jr. Thermophysical characteristics of a wickless heat pipe in microgravity — Constrained vapor bubble experiment // Internat. J. Heat Mass Transfer. 2014. V. 78. P. 1105–1113; https://doi.org/10.1016/j.ijheatmasstransfer.2014.07.044 
     
  2. Deng Q., Braun R. J., Driscoll T. A., King-Smith P. E. A model for the tear film and ocular surface temperature for partial blinks // Interfacial Phenom. Heat Transfer. 2013, V. 1, N 4. P. 357–381; https://doi.org/10.1615/InterfacPhenomHeatTransfer.v1.i4.40 
     
  3. Ajaev V. S., Gatapova V. S., Kabov O. A. Rupture of thin liquid films on structured surfaces // Phys. Rev. E. 2011. V. 84. Article 041606; https://doi.org/10.1103/PhysRevE.84.041606 
     
  4. Golobic I., Petkovsek J., Baselj M., Papez A., Kenning D. B. R. Experimental determination of transient wall temperature distributions close to growing vapor bubbles // Heat Mass Transfer. 2009. V. 45. P. 857–866; https://doi.org/10.1007/s00231-007-0295-y 
     
  5. Golobic I., Petkovsek J., Kenning D.B . R. Bubble growth and horizontal coalescence in saturated pool boiling on a titanium foil, investigated by high-speed IR thermography // Internat. J. Heat Mass Transfer. 2012. V. 55, N 4. P. 1385–1402; https://doi.org/10.1016/j.ijheatmasstransfer.2011.08.021 
     
  6. Zupan$\check{c}$i$\check{c}$ M., Gregor$\check{c}$i$\check{c}$ P., Bucci M., Wang C., Aguiar G.M., Bucci M. The wall heat flux partitioning during the pool boiling of water on thin metallic foils // Appl. Thermal Engrg. 2022. V. 200. Article 117638; https://doi.org/10.1016/j.applthermaleng.2021.117638
     
  7. Surtaev A., Serdyukov V., Malakhov I., Safarov A. Nucleation and bubble evolution in subcooled liquid under pulse heating // Internat. J. Heat Mass Transfer. 2021. V. 169. Article 120911; https://doi.org/10.1016/j.ijheatmasstransfer.2021.120911
     
  8. Voulgaropoulos V., Aguiar G. M., Markides C. N., Bucci M. Simultaneous laser-induced fluorescence, particle image velocimetry and infrared thermography for the investigation of the flow and heat transfer characteristics of nucleating vapour bubbles // Internat. J. Heat Mass Transfer. 2022. V. 187. Article 122525; https://doi.org/10.1016/j.ijheatmasstransfer.2022.122525
     
  9. Shakerur R., McCarthy M. Nanostructure-supported evaporation underneath a growing bubble // ACS Appl. Mater. Interfaces. 2019. V. 11, N 13. P. 12441–12451; https://doi.org/10.1021/acsami.8b21260|
     
  10. Donoghue D. B., Albadawi A., Delauré Y. M. C., Robinson A. J., Murray D. B. Bubble impingement and the mechanisms of heat transfer // Internat. J. Heat Mass Transfer. 2014. V. 71. P. 439–450; https://doi.org/10.1016/j.ijheatmasstransfer.2013.12.014
     
  11. Carlomagno G. M., Cardone G. Infrared thermography for convective heat transfer measurements // Exp. Fluids. 2010. V. 49. P. 1187–1218; https://doi.org/10.1007/s00348-010-0912-2
     
  12. Surtaev A. S., Serdyukov V. S., Moiseev M. I. Application of high-speed IR thermography to study boiling of liquids // Instrum. Exp. Tech. 2016. V. 59. P. 615–620; https://doi.org/10.1134/S0020441216030222
     
  13. Carlomagno G. M., de Luca L. Infrared Thermography in Heat Transfer: Handbook of Flow Visualization. Washington: Hemisphere, 1989.
     
  14. Hestroni G., Rozenblit R., Yarin L. P. A hot-foil infrared technique for studying the temperature field of a wall // Meas. Sci. Technol. 1996. V. 7, N 10. P. 1418–1427; https://doi.org/10.1088/0957-0233/7/10/012
     
  15. Sargent S. R., Hedlund C. R., Ligrani P. M. An infrared thermography imaging system for convective heat transfer measurements in complex flows // Meas. Sci. Technol. 1998. V. 9, N 12. P. 1974–1981; https://doi.org/10.1088/0957-0233/9/12/008
     
  16. Astarita T., Cardone G., Carlomagno G. M., Meola C. A survey of infrared thermography for convective heat transfer measurements // Opt. Laser Technol. 2000. V. 32, N 7. P. 593–610; https://doi.org/10.1016/S0030-3992(00)00086-4
     
  17. Hadamard J. Sur les problèmes aux dérivées partielles et leur signification physique // Princeton Univ. Bull. 1902. P. 49–52.
     
  18. Hadamard J. Lectures on the Cauchy Problem in Linear Differential Equations. New Haven: Yale Univ. Press, 1923.
     
  19. Carleman T. Les Fonctions Quasi Analytiques. Paris: Gauthier-Villars, 1926.
     
  20. Лаврентьев М. М., Романов В. Г., Шишатский С. П. Некорректные задачи математической физики и анализа. М.: Наука, 1980.
     
  21. Lavrent’ev M. M. Some Improperly Posed Problems of Mathematical Physics. Springer-Verl., 1967.
     
  22. Мергелян С. Н. Гармоническая аппроксимация и приближённое решение задачи Коши для уравнения Лапласа // Успехи мат. наук. 1956. Т. 11, № 5. С. 3–26.
     
  23. Лаврентьев М. М. О задаче Коши для уравнения Лапласа // Докл. АН СССР. 1955. Т. 102, №. 2. С. 205–206. 
     
  24. Pucci C. Sui problema di Cauchy non ben posti // Atti Accad. Naz. Lincei. 1955. V. 18, N 5. P. 473–477. 
     
  25. Лаврентьев М. М. О задаче Коши для уравнения Лапласа // Изв. АН СССР. 1956. Т. 20, № 6. С. 819–842. 
     
  26. Козлов В. А., Мазья В. А., Фомин В. А. Об одном итерационном методе решения задачи Коши для эллиптических уравнений // Журн. вычисл. математики и мат. физики. 1991. Т. 31, № 1. С. 64–73.
     
  27. Kabanikhin S. I., Karchevsky A. L. Method for solving the Cauchy problem for an elliptic equation // J. Inverse Ill-Posed Probl. 1995. V. 3, № 1. P. 21–46; https://doi.org/10.1515/jiip.1995.3.1.21
     
  28. Hao D. N., Lesnic D. The Cauchy problem for Laplace’s equation via the conjugate gradient method // IMA J. Appl. Math. 2000. V. 65, N 2. P. 199–217; https://doi.org/10.1093/imamat/65.2.199
     
  29. Marin L., Elliott L., Heggs P. J., Ingham D. B., Lesnic D., Wen X. An alternating iterative algorithm for the Cauchy problem associated to the Helmholtz equation // Comput. Meth. Appl. Mech. Engrg. 2003. V. 192, N 5–6. P. 709–722; https://doi.org/10.1016/S0045-7825(02)00592-3
     
  30. Marin L., Elliott L., Heggs P. J., Ingham D. B., Lesnic D., Wen X. Conjugate gradient-boundary element solution to the Cauchy problem for Helmholtz-type equations // Comput. Mech. 2003. V. 31, N 3–4. P. 367–377; https://doi.org/10.1007/s00466-003-0439-y
     
  31. Marin L., Elliott L., Heggs P. J., Ingham D. B., Lesnic D., Wen X. BEM solution for the Cauchy problem associated with Helmholtz-type equations by the Landweber method // Engrg. Anal. Bound. Element. 2004. V. 28, N 9. P. 1025–1034; https://doi.org/10.1016/j.enganabound.2004.03.001
     
  32. Marin L. A meshless method for the numerical solution of the Cauchy problem associated with three-dimensional Helmholtz-type equations // Appl. Math. Comput. 2005. V. 165, N 2. P. 355–374; https://doi.org/10.1016/j.amc.2004.04.052
     
  33. Сорокин С. Б. Неявеый итерационный метод численного решения задачи Коши для эллиптических уравнений // Сиб. журн. индустр. математики. 2019. Т. 22, № 4. С. 95–106; https://doi.org/10.33048/sibjim.2019.22.410
     
  34. Klibanov M. V., Santosa F. A. Computational quasi-reversibility method for Cauchy problems for Laplace’s equation // SIAM J. Appl. Math. 1991. V. 51, N 6. P. 1653–1675; https://doi.org/10.1137/0151085
     
  35. Clason C., Klibanov M. V. The quasi-reversibility method for thermoacoustic tomography in a heterogeneous medim // SIAM J. Sci. Comput. 2007. V. 30, N 1. P. 1–23; https://doi.org/10.1137/06066970X
     
  36. Bourgeois L. A mixed formulation of quasi-reversibility to solve the Cauchy problem for Laplace’s equation // Inverse Problems. 2005. V. 21, N 3. P. 1087–1104; https://doi.org/10.1088/0266-5611/21/3/018
     
  37. Bourgeois L. Convergence rates for the quasi-reversibility method to solve the Cauchy problem for Laplace’s equation // Inverse Problems. 2006. V. 22, N 2. P. 413–430; https://doi.org/10.1088/0266-5611/22/2/002
     
  38. Bourgeois L., Darde J. A duality-based method of quasi-reversibility to solve the Cauchy problem in the presence of noisy data // Inverse Problems. 2010. V. 26. Article 095016; https://doi.org/10.1088/0266-5611/26/9/095016
     
  39. Bourgeois L. About stability and regularization of ill-posed elliptic Cauchy problems: the case of $C^{1,1}$ domains // ESAIM: M2AN. 2010. V. 44, N 4. P. 715–735; https://doi.org/10.1051/m2an/2010016
     
  40. Kabanikhin S. I., Gasimov Y. S., Nurseitov D. B., Shishlenin M. A., Sholpanbaev B. B., Kasenov S. E. Regularization of the continuation problem for elliptic equations // J. Inverse Ill-Posed Probl. 2014. V. 21, N 6. P. 871–884; https://doi.org/10.1515/jip-2013-0041
     
  41. Kabanikhin S. I., Shishlenin M. A., Nurseitov D. B., Nurseitova A. T., Kasenov S. E. Comparative analysis of methods for regularizing an initial boundary value problem for the Helmholtz equation // J. Appl. Math. 2014. V. 2014. Article 786326; https://doi.org/10.1155/2014/786326
     
  42. Engl H. W., Hanke M., Neubauer A. Regularization of Inverse Problems. Dordrecht: Kluwer Acad. Publ., 1996. (Mathematics and Its Appl. V. 375); http://dx.doi.org/10.1007/978-94-009-1740-8
     
  43. Klibanov M. V., Timonov A. Carleman Estimates for Coefficient Inverse Problems and Numerical Applications. Utrecht, Boston: VSP, 2004. 
     
  44. Xiong X.-T., Fu C.-L. Two approximate methods of a Cauchy problem for the Helmholtz equation // Comput. Appl. Math. 2007. V. 26, N 2. P. 285–307; https://www.scielo.br/j/cam/a/TxPV5dhMznShZKZJhv6V5YH/?format=pdf&lang=en’
     
  45. Qin H. H., Wen D. W. Tikhonov type regularization method for the Cauchy problem of the modified Helmholtz equation // Appl. Math. Comput. 2009. V. 203, N 5. P. 617–628; https://doi.org/10.1016/j.amc.2008.05.007
     
  46. Reginska T., Tautenhahn T. Conditional stability estimates and regularization with applications to Cauchy problems for the Helmholtz equation // Numer. Funct. Anal. Optim. 2009. V. 30, N 9–10. P. 1065–1097; https://doi.org/10.1080/01630560903393170
     
  47. Cheng J., Hon Y. C., Wei T., Yamamoto M. Numerical computation of a Cauchy problem for Laplace’s equation // Appl. Math. Mech. 2001. V. 81, N 10. P. 665–674; https://doi.org/10.1002/1521-4001(200110)81:10<665::AID-ZAMM665>3.0.CO;2-V
     
  48. Hon Y. C., Wei T. Backus—Gilbert algorithm for the Cauchy problem of the Laplace equation // Inverse Problems. 2001. V. 17, N 2. P. 261–271; https://doi.org/10.1088/0266-5611/17/2/306
     
  49. Engl H. W., Leitao A. A. Mann iterative regularization method for elliptic Cauchy problems // Numer. Funct. Anal. Optim. 2001. V. 22, N 7–8, P. 861–884; https://doi.org/10.1081/NFA-100108313
     
  50. Qian Z., Fu C.-L., Xiong X.-T. Fourth-order modified method for the Cauchy problem for the Laplace equation // J. Comput. Appl. Math. 2006. V. 192, N 2. P. 205–218; https://doi.org/10.1016/j.cam.2005.04.031
     
  51. Shi R., Wei T., Qin H. H. A fourth-order modified method for the Cauchy problem of the modified Helmholtz equation // Numer. Math. Theor. Meth. Appl. 2009. V. 2, N 3. P. 326-340; https://doi.org/10.4208/nmtma.2009.m88032
     
  52. Fu C.-L., Li H.-F., Qian Z., Xiong X.-T. Fourier regularization method for solving a Cauchy problem for the Laplace equation // Inverse Probl. Sci. Engrg. 2008. V. 16, N 2. P. 159–169; https://doi.org/10.1080/17415970701228246
     
  53. Yang F. The truncation method for identifying an unknown source in the Poisson equation // Appl. Math. Comput. 2011. V. 217, N 22. P. 9334–9339; http://dx.doi.org/10.1016/j.amc.2011.04.017
     
  54. Qiu C.-Y., Fu C.-L. Wavelets and regularization of the Cauchy problem for the Laplace equation // J. Math. Anal. Appl. 2008. V. 338, N 2. P. 1440–1447; https://doi.org/10.1016/j.jmaa.2007.06.035
     
  55. Reginska T., Wakulicz A. Wavelet moment method for the Cauchy problem for the Helmholtz equation // J. Comput. Appl. Math. 2009. V. 223, N 1. P. 218–229; https://doi.org/10.1016/j.cam.2008.01.005
     
  56. Leitao A., Alves M. M. On level set type methods for elliptic Cauchy problems // Inverse Problems. 2007. V. 23, N 5. P. 2207–2222; https://doi.org/10.1088/0266-5611/23/5/023
     
  57. Titarenko V. N., Yagola A. G. Cauchy problems for Laplace equation on compact sets // Inverse Probl. Sci. Engrg. 2002. V. 10, N 3. P. 235–254; https://doi.org/10.1080/10682760290007462
     
  58. Karchevsky A. L. Reformulation of an inverse problem statement that reduces computational costs // Eurasian J. Math. Comput. Appl. 2013. V. 1, N 2. P. 5–20; https://doi.org/10.32523/2306-3172-2013-1-2-4-20
     
  59. Сорокин С. Б. Экономичный алгоритм для численного решения задачи идентификации правой части уравнения Пуассона // Сиб. журн. индустр. математики. 2018. Т. 21, № 2. С. 101–107; https://doi.org/10.17377/sibjim.2018.21.209
     
  60. Сорокин С. Б. Экономичный прямой метод численного решения задачи Коши для уравнения Лапласа // Сиб. журн. вычисл. математики. 2019. Т. 22, № 1. С. 99–117; https://doi.org/10.15372/SJNM20190107
     
  61. Сорокин С. Б. Прямой метод решения обратной коэффициентной задачи для эллиптического уравнения с кусочно-постоянными коэффициентами // Сиб. журн. индустр. математики. 2021. Т. 24, № 2. С. 134–147; https://doi.org/10.33048/SIBJIM.2021.24.211
     
  62. Klibanov M. V. Carleman estimates for the regularization of ill-posed Cauchy problems // Appl. Numer. Math. 2015. V. 94. P. 46–74; https://doi.org/10.1016/j.apnum.2015.02.003
     
  63. Marchuk I., Karchevsky A., Surtaev A., Kabov O. Heat flux at the surface of metal foil heater under evaporating sessile droplets // Internat. J. Aerosp. Engrg. 2015. V. 2015. Article 391036. 
     
  64. Karchevsky A. L., Marchuk I. V., Kabov O. A. Calculation of the heat flux near the liquid-gas-solid contact line // Appl. Math. Model. 2016. V. 40, N 2. P. 1029–1037.
     
  65. Чеверда В. В., Марчук И. В., Карчевский А. Л., Орлик Е. В., Кабов О. А. Экспериментальное исследование теплообмена в стекающем по наклонной фольге ручейке // Теплофизика и аэромеханика. 2016. Т. 23, № 3. С. 431–436.
     
  66. Чеверда В. В., Карчевский А. Л., Марчук И. В., Кабов И. В. Плотность теплового потока в области контактной линии капли, лежащей на горизонтальной поверхности тонкой нагреваемой фольги // Теплофизика и аэромеханика. 2017. Т. 24, № 5. С. 825–828.
     
  67. Technical Data. 3MTM FluorinertTM Electronic Liquid FC-72. https://multimedia.3m.com/mws/media/64892O/3m-fluorinert-electronic-liquid-fc72-en.pdf
     
  68. Тихонов А. Н. Об устойчевых методах суммирования рядов Фурье // Докл. АН СССР. 1964. Т. 156, № 2, С. 268–271.
     
  69. Прэтт У. Цифровая обработка изображений. М.: Мир, 1982.

Работа выполнена при финансовой поддержке Российского научного фонда (проект 19-19-00695П).


Н. Е. Сибиряков
  1. Институт теплофизики им. С. С. Кутателадзе СО РАН, 
    просп. Акад. Лаврентьева, 1, г. Нововсибирск 630090, Россия

E-mail: kolyasibir@yandex.ru

Д. Ю. Кочкин
  1. Институт теплофизики им. С. С. Кутателадзе СО РАН, 
    просп. Акад. Лаврентьева, 1, г. Нововсибирск 630090, Россия

E-mail: kochkin1995@mail.ru

О. А. Кабов
  1. Институт теплофизики им. С. С. Кутателадзе СО РАН, 
    просп. Акад. Лаврентьева, 1, г. Нововсибирск 630090, Россия

E-mail: kabov@itp.nsc.ru

А. Л. Карчевский
  1. Институт теплофизики им. С. С. Кутателадзе СО РАН, 
    просп. Акад. Лаврентьева, 1, г. Нововсибирск 630090, Россия

E-mail: karchevs@math.nsc.ru

Статья поступила 04.06.2022 г. 
После доработки — 04.06.2023 г.
Принята к публикации 07.06.2023 г.

Abstract:

The article describes a method for determining the heat flux density on the surface of a thin foil that is inaccessible for thermal imaging measurements according to thermal imaging data from the other side of the foil available for measurements. Mathematically, the problem is reduced to solving the Cauchy problem for an elliptic equation, which is ill-posed. The problem is solved using noise smoothing in the initial temperature field and the correct limit on the number of expansion terms in the Fourier series. According to the measurement results, the heat flux density reaches its maximum in the area of the contact line and amounts to 4200W/m2.

References:
  1. Kundan A., Plawsky J. L., Wayner P. C. Jr. Thermophysical characteristics of a wickless heat pipe in microgravity — Constrained vapor bubble experiment. Internat. J. Heat Mass Transfer, 2014, Vol. 78, pp. 1105–1113; https://doi.org/10.1016/j.ijheatmasstransfer.2014.07.044
     
  2. Deng Q., Braun R. J., Driscoll T. A., King-Smith P. E. A model for the tear film and ocular surface temperature for partial blinks. Interfacial Phenom. Heat Transfer, 2013, Vol. 1, No. 4, pp. 357–381; https://doi.org/10.1615/InterfacPhenomHeatTransfer.v1.i4.40
     
  3. Ajaev V. S., Gatapova V. S., Kabov O. A. Rupture of thin liquid films on structured surfaces. Phys. Rev. E, 2011, Vol. 84, article 041606; https://doi.org/10.1103/PhysRevE.84.041606
     
  4. Golobic I., Petkovsek J., Baselj M., Papez A., Kenning D. B. R. Experimental determination of transient wall temperature distributions close to growing vapor bubbles. Heat Mass Transfer, 2009, Vol. 45, pp. 857–866; https://doi.org/10.1007/s00231-007-0295-y
     
  5. Golobic I., Petkovsek J., Kenning D. B. R. Bubble growth and horizontal coalescence in saturated pool boiling on a titanium foil, investigated by high-speed IR thermography. Internat. J. Heat and Mass Transfer, 2012, Vol. 55, No. 4, pp. 1385–1402; https://doi.org/10.1016/j.ijheatmasstransfer.2011.08.021
     
  6. Zupan$\check{c}$i$\check{c}$ M., Gregor$\check{c}$i$\check{c}$ P., Bucci M., Wang C., Aguiar G. M., Bucci M. The wall heat flux partitioning during the pool boiling of water on thin metallic foils Appl. Thermal Engrg., 2022, V. 200, article 117638; https://doi.org/10.1016/j.applthermaleng.2021.117638
     
  7. Surtaev A., Serdyukov V., Malakhov I., Safarov A. Nucleation and bubble evolution in subcooled liquid under pulse heating. Internat. J. Heat Mass Transfer, 2021, Vol. 169, article 120911; https://doi.org/10.1016/j.ijheatmasstransfer.2021.120911
     
  8. Voulgaropoulos V., Aguiar G. M., Markides C. N., Bucci M. Simultaneous laser-induced fluorescence, particle image velocimetry and infrared thermography for the investigation of the flow and heat transfer characteristics of nucleating vapour bubbles. Internat. J. Heat Mass Transfer, 2022, Vol. 187, article 122525; https://doi.org/10.1016/j.ijheatmasstransfer.2022.122525
     
  9. Shakerur R., McCarthy M. Nanostructure-supported evaporation underneath a growing bubble. ACS Appl. Mater. Interfaces, 2019, Vol. 11, No. 13, pp. 12441–12451; https://doi.org/10.1021/acsami.8b21260
     
  10. Donoghue D. B., Albadawi A., Delauré Y. M. C., Robinson A. J., Murray D. B. Bubble impingement and the mechanisms of heat transfer. Internat. J. Heat Mass Transfer, 2014, Vol. 71, pp. 439–450; https://doi.org/10.1016/j.ijheatmasstransfer.2013.12.014
     
  11. Carlomagno G. M., Cardone G. Infrared thermography for convective heat transfer measurements. Exp. Fluids, 2010, Vol. 49, pp. 1187–1218; https://doi.org/10.1007/s00348-010-0912-2
     
  12. Surtaev A. S., Serdyukov V. S., Moiseev M. I. Application of high-speed IR thermography to study boiling of liquids. Instrum. Exp. Tech., 2016, Vol. 59, pp. 615–620; https://doi.org/10.1134/S0020441216030222
     
  13. Carlomagno G. M., de Luca L. Infrared Thermography in Heat Transfer: Handbook of Flow Visualization. Washington: Hemisphere, 1989.
     
  14. Hestroni G., Rozenblit R., Yarin L. P. A hot-foil infrared technique for studying the temperature field of a wall // Meas. Sci. Technol. 1996. V. 7, N 10. P. 1418–1427; https://doi.org/10.1088/0957-0233/7/10/012
     
  15. Sargent S. R., Hedlund C. R., Ligrani P. M. An infrared thermography imaging system for convective heat transfer measurements in complex flows. Meas. Sci. Technol., 1998, Vol. 9, No. 12, pp. 1974–1981; https://doi.org/10.1088/0957-0233/9/12/008
     
  16. Astarita T., Cardone G., Carlomagno G. M., Meola C. A survey of infrared thermography for convective heat transfer measurements. Opt. Laser Technol., 2000, Vol. 32, No. 7, pp. 593–610; https://doi.org/10.1016/S0030-3992(00)00086-4
     
  17. Hadamard J. Sur les problèmes aux dérivées partielles et leur signification physique. Princeton Univ. Bull., 1902, pp. 49–52.
     
  18. Hadamard J. Lectures on the Cauchy Problem in Linear Differential Equations. New Haven: Yale Univ. Press, 1923.
     
  19. Carleman T. Les Fonctions Quasi Analytiques. Paris: Gauthier-Villars, 1926.
     
  20. Lavrent’ev M. M., Romanov V. G., Shishatskii V. G. Ill-Posed Problems of Mathematical Physics and Analysis. Translations of Mathematical Monographs. Providence: Amer. Math. Soc.. 1986, Vol. 64.
     
  21. Lavrent’ev M. M. Some Improperly Posed Problems of Mathematical Physics. Springer-Verl., 1967.
     
  22. Mergelyan S. N. Garmonicheskaya approksimatsiya i priblizhennoe reshenie zadach Koshi dlya uravneniya Laplasa [Harmonic approximation and approximate solution of the Cauchy problem for the Laplace equation]. Uspekhi Mat. Nauk, 1956, Vol. 11, No. 5, pp. 3—26 (in Russian).
     
  23. M. M. Lavrent’ev O zadache Koshi dlya uravneniya Laplasa [On the Cauchy problem for Laplace equation]. Dokl. Akad. Nauk SSSR, 1956. Vol. 102, No. 2, pp. 205–206 (in Russian).
     
  24. Pucci C. Sui problema di Cauchy non ben posti. Atti Accad. Naz. Lincei, 1955, Vol. 18, No. 5, pp. 473–477.
     
  25. Lavrent’ev M. M. O zadache Koshi dlya uravneniya Laplasa [On the Cauchy problem for Laplace equation]. Izv. Akad. Nauk SSSR, Ser. Mat., 1956, Vol. 20, No. 6, pp. 819–842.
     
  26. Kozlov V. A., Maz’ya V. G., Fomin A. V. Ob odnom iteratsionnom metode resheniya zadachi Koshi dlya elepticheskih uravnenii [An iterative method for solving the Cauchy problem for elliptic equations]. Zh. Vychisl. Mat. Mat. Fiz., 1991, Vol. 31, No. 1, pp. 64–73 (in Russian)
     
  27. Kabanikhin S. I., Karchevsky A. L. Method for solving the Cauchy problem for an elliptic equation. J. Inverse Ill-Posed Probl., 1995, Vol. 3, No. 1, pp. 21–46; https://doi.org/10.1515/jiip.1995.3.1.21
     
  28. Hao D. N., Lesnic D. The Cauchy problem for Laplace’s equation via the conjugate gradient method. IMA J. Appl. Math., 2000, Vol. 65, No. 2, pp. 199–217; https://doi.org/10.1093/imamat/65.2.199
     
  29. Marin L., Elliott L., Heggs P. J., Ingham D. B., Lesnic D., Wen X. An alternating iterative algorithm for the Cauchy problem associated to the Helmholtz equation. Comput. Meth. Appl. Mech. Engrg., 2003, Vol. 192, No. 5–6, pp. 709–722; https://doi.org/10.1016/S0045-7825(02)00592-3

     
  30. Marin L., Elliott L., Heggs P. J., Ingham D. B., Lesnic D., Wen X. Conjugate gradient-boundary element solution to the Cauchy problem for Helmholtz-type equations. Comput. Mech., 2003, Vol. 31, No. 3–4, pp. 367–377; https://doi.org/10.1007/s00466-003-0439-y
     
  31. Marin L., Elliott L., Heggs P. J., Ingham D. B., Lesnic D., Wen X. BEM solution for the Cauchy problem associated with Helmholtz-type equations by the Landweber method. Engrg. Anal. Bound. Element, 2004, Vol. 28, No. 9, pp. 1025–1034; https://doi.org/10.1016/j.enganabound.2004.03.001
     
  32. Marin L. A meshless method for the numerical solution of the Cauchy problem associated with threedimensional Helmholtz-type equations. Appl. Math. Comput., 2005, Vol. 165, No. 2, pp. 355–374; https://doi.org/10.1016/j.amc.2004.04.052
     
  33. Sorokin S. B. An Implicit Iterative Method for Numerical Solving the Cauchy Problem for Elliptic Equations. J. Appl. Ind. Math., 2019, Vol. 13, No. 4, pp. 1–14; https://doi.org/10.1134/S199047891904001X
     
  34. Klibanov M. V., Santosa F. A. Computational quasi-reversibility method for Cauchy problems for Laplace’s equation. SIAM J. Appl. Math., 1991, Vol. 51, No. 6, pp. 1653–1675; https://doi.org/10.1137/0151085
     
  35. Clason C., Klibanov M. V. The quasi-reversibility method for thermoacoustic tomography in a heterogeneous medim. SIAM J. Sci. Comput., 2007, Vol. 30, No. 1, pp. 1–23; https://doi.org/10.1137/06066970X
     
  36. Bourgeois L. A mixed formulation of quasi-reversibility to solve the Cauchy problem for Laplace’s equation. Inverse Problems, 2005, Vol. 21, No. 3, pp. 1087–1104; https://doi.org/10.1088/0266-5611/21/3/018
     
  37. Bourgeois L. Convergence rates for the quasi-reversibility method to solve the Cauchy problem for Laplace’s equation. Inverse Problems, 2006, Vol. 22, No. 2, pp. 413–430; https://doi.org/10.1088/0266-5611/22/2/002
     
  38. Bourgeois L., Darde J. A duality-based method of quasi-reversibility to solve the Cauchy problem in the presence of noisy data. Inverse Problems, 2010, Vol. 26, article 095016; https://doi.org/10.1088/0266-5611/26/9/095016
     
  39. Bourgeois L. About stability and regularization of ill-posed elliptic Cauchy problems: the case of $C^{1,1}$ domains. ESAIM: M2AN, 2010, Vol. 44, No. 4, pp. 715–735; https://doi.org/10.1051/m2an/2010016
     
  40. Kabanikhin S. I., Gasimov Y. S., Nurseitov D. B., Shishlenin M. A., Sholpanbaev B. B., Kasenov S. E. Regularization of the continuation problem for elliptic equations. J. Inverse Ill-Posed Probl., 2014, Vol. 21, No. 6, pp. 871–884; https://doi.org/10.1515/jip-2013-0041
     
  41. Kabanikhin S. I., Shishlenin M. A., Nurseitov D. B., Nurseitova A. T., Kasenov S. E. Comparative analysis of methods for regularizing an initial boundary value problem for the Helmholtz equation. J. Appl. Math., 2014, Vol. 2014, article 786326; https://doi.org/10.1155/2014/786326
     
  42. Engl H. W., Hanke M., Neubauer A. Regularization of Inverse Problems. Dordrecht: Kluwer Acad. Publ., 1996. 
     
  43. Klibanov M. V., Timonov A. Carleman Estimates for Coefficient Inverse Problems and Numerical Applications. Utrecht, Boston: VSP, 2004.
     
  44. Xiong X.-T., Fu C.-L. Two approximate methods of a Cauchy problem for the Helmholtz equation. Comput. Appl. Math., 2007, Vol. 26, No. 2, pp. 285–307; https://www.scielo.br/j/cam/a/TxPV5dhMznShZKZJhv6V5YH/?format=pdf&lang=en’
     
  45. Qin H. H., Wen D. W. Tikhonov type regularization method for the Cauchy problem of the modified Helmholtz equation. Appl. Math. Comput., 2009, Vol. 203, No. 5, pp. 617–628; https://doi.org/10.1016/j.amc.2008.05.007 
     
  46. Reginska T., Tautenhahn T. Conditional stability estimates and regularization with applications to Cauchy problems for the Helmholtz equation. Numer. Funct. Anal. Optim., 2009, Vol. 30, No. 9–10, pp. 1065–1097; https://doi.org/10.1080/01630560903393170
     
  47. Cheng J., Hon Y. C., Wei T., Yamamoto M. Numerical computation of a Cauchy problem for Laplace’s equation. Appl. Math. Mech., 2001, Vol. 81, No. 10, pp. 665–674; https://doi.org/10.1002/1521-4001(200110)81:10<665::AID-ZAMM665>3.0.CO;2-V
     
  48. Hon Y.C., Wei T. Backus—Gilbert algorithm for the Cauchy problem of the Laplace equation. Inverse Probl., 2001, Vol. 17, No. 2, pp. 261–271; https://doi.org/10.1088/0266-5611/17/2/306
     
  49. Engl H. W., Leitao A. A. Mann iterative regularization method for elliptic Cauchy problems. Numer. Funct. Anal. Optim., 2001, Vol. 22, No. 7–8, pp. 861–884; https://doi.org/10.1081/NFA-100108313
     
  50. Qian Z., Fu C.-L., Xiong X.-T. Fourth-order modified method for the Cauchy problem for the Laplace equation. J. Comput. Appl. Math., 2006, Vol. 192, No. 2, pp. 205–218; https://doi.org/10.1016/j.cam.2005.04.031
     
  51. Shi R., Wei T., Qin H. H. A fourth-order modified method for the Cauchy problem of the modified Helmholtz equation. Numer. Math. Theor. Meth. Appl., 2009, Vol. 2, No. 3, pp. 326-340; https://doi.org/10.4208/nmtma.2009.m88032
     
  52. Fu C.-L., Li H.-F., Qian Z., Xiong X.-T. Fourier regularization method for solving a Cauchy problem for the Laplace equation. Inverse Probl. Sci. Engrg., 2008, Vol. 16, No. 2, pp. 159–169; https://doi.org/10.1080/17415970701228246
     
  53. Yang F. The truncation method for identifying an unknown source in the Poisson equation. Appl. Math. Comput., 2011, Vol. 217, No. 22, pp. 9334–9339; http://dx.doi.org/10.1016/j.amc.2011.04.017
     
  54. Qiu C.-Y., Fu C.-L. Wavelets and regularization of the Cauchy problem for the Laplace equation. J. Math. Anal. Appl., 2008, Vol. 338, No. 2, pp. 1440–1447; https://doi.org/10.1016/j.jmaa.2007.06.035
     
  55. Reginska T., Wakulicz A. Wavelet moment method for the Cauchy problem for the Helmholtz equation. J. Comput. Appl. Math., 2009, Vol. 223, No. 1, pp. 218–229; https://doi.org/10.1016/j.cam.2008.01.005
     
  56. Leitao A., Alves M. M. On level set type methods for elliptic Cauchy problems. Inverse Problems, 2007, Vol. 23, No. 5, pp. 2207–2222; https://doi.org/10.1088/0266-5611/23/5/023
     
  57. Titarenko V. N., Yagola A. G. Cauchy problems for Laplace equation on compact sets. Inverse Probl. Sci. Engrg., 2002, Vol. 10, No. 3, pp. 235–254; https://doi.org/10.1080/10682760290007462
     
  58. Karchevsky A. L. Reformulation of an inverse problem statement that reduces computational costs. Eurasian J. Math. Comput. Appl., 2013, Vol. 1, No. 2, pp. 5–20; https://doi.org/10.32523/2306-3172-2013-1-2-4-20
     
  59. Sorokin S. B. An economical algorithm for numerical solution of the problem of identifying the right-hand side of the poisson equation. J. Appl. Ind. Math., 2018, Vol. 12, No. 2, pp. 362–368; https://doi.org/10.1134/S1990478918020163
     
  60. Sorokin S. B. An efficient direct method for numerically solving the cauchy problem for laplace’s equation. Numer. Anal. Appl., 2019, Vol. 12, No. 1, pp. 87–103; https://doi.org/10.1134/S1995423919010075
     
  61. Sorokin S. B. A Direct Method for Solving the Inverse Coefficient Problem for an Elliptic Equation with Piecewise Constant Coefficients. J. Appl. Ind. Math., 2021, Vol. 15, No. 2, pp. 331–342; https://doi.org/10.1134/S1990478921020150
     
  62. Klibanov M. V. Carleman estimates for the regularization of ill-posed Cauchy problems. Appl. Numer. Math., 2015, Vol. 94, pp. 46–74; https://doi.org/10.1016/j.apnum.2015.02.003
     
  63. Marchuk I., Karchevsky A., Surtaev A., Kabov O. Heat flux at the surface of metal foil heater under evaporating sessile droplets. Internat. J. Aerosp. Engrg., 2015, Vol. 2015, article 391036.
     
  64. Karchevsky A. L., Marchuk I. V., Kabov O. A. Calculation of the heat flux near the liquid-gas-solid contact line. Appl. Math. Model., 2016, Vol. 40, No. 2, pp. 1029–1037.
     
  65. Cheverda V. V., Marchuk I. V., Karchevsky A. L., Orlik E. V., Kabov O. A. Experimental investigation of heat transfer in a rivulet on the inclined foil. Thermophys. Aeromechanics, 2016, Vol. 23, No. 3, pp. 415–420; https://doi.org/10.1134/S0869864316030112
     
  66. Cheverda V. V., Karchevsky A. L., Marchuk I. V., Kabov O. A. Heat flux density in the region of droplet contact line on a horizontal surface of a thin heated foil. Thermophys. Aeromechanics, 2017, Vol. 24, No. 5, pp. 803–806; https://doi.org/10.1134/S086986431705016X
     
  67. Technical Data. 3MTM FluorinertTM Electronic Liquid FC-72. https://multimedia.3m.com/mws/media/64892O/3m-fluorinert-electronic-liquid-fc72-en.pdf
     
  68. Tikhonov A. N. Ob ustoichevyh metodah summirovaniya ryadov Fur’e [On stable summation methods for Fourier series]. Doklady Akad. Nauk SSSR, 1964, Vol. 156, No. 2, pp. 268-–271 (In Russian).
     
  69. Pratt W. K. Digital Image Processing. N. Y.: Intersci. Publ., 1978.