Математическое моделирование закачки углекислого газа в пласт с метаном и водой, с учётом образования гидрата углекислого газа
Математическое моделирование закачки углекислого газа в пласт с метаном и водой, с учётом образования гидрата углекислого газа
Аннотация:
Увеличение концентрации углекислого газа в атмосфере, вызванное сжиганием топлива, негативно сказывается на текущей биосфере Земли. Одним из способов избавиться от избытка диоксида углерода в атмосфере является его улавливание и хранение. Предлагаются различные методы долгосрочного хранения диоксида углерода, в том числе в различных геологических формациях в газогидратной форме, так как газовые гидраты обладают рядом уникальных свойств, например, есть возможность стабильного хранения достаточно большого количества газа в малом объёме при относительно небольшом давлении. Одним из объектов для создания подземных хранилищ диоксида углерода являются истощённые месторождения природного газа, так как они хорошо изучены, известны характеристики пластов, их геометрические размеры, а также имеются пробурённые скважины. Для изучения закономерностей процесса формирования подземного газогидратного хранилища углекислого газа в статье представлена математическая модель процесса закачки диоксида углерода в зонально-неоднородный пористый пласт, изначально насыщенный метаном и водой, сопровождающегося образованием газогидрата. В отличие от предыдущих работ математическая модель дополнительно учитывает ряд факторов: растворимость углекислого газа в воде, зональную неоднородность пласта, теплообмен рассматриваемой области пористой среды с окружающими непроницаемыми для вещества породами, фильтрацию воды и газа. Построены численные решения задачи, описывающие распределения параметров (давления, температуры, насыщенности гидратом углекислого газа) в пласте.
Литература:
- Misyura S., Strizhak P., Meleshkin A., Morozov V., Gaidukova O., Shlegel N., Shkola M. A review of gas capture and liquid separation technologies by CO2 gas hydrate // Energies. 2023. V. 16, N 8. Article 3318; DOI: 10.3390/en16083318
- Измерения погодной обсерватории Мауна-Лоа. ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2_mm_mlo.txt
- Feyzi V., Mohebbi V. Experimental study and modeling of the kinetics of carbon-dioxide hydrate formation and dissociation: A mass transfer limited kinetic approach // J. Nat. Gas. Sci. Eng. 2020. V. 77. Article 103273; DOI: 10.1016/j.jngse.2020.103273
- Cao X., Wang H., Yang K., Wu S., Chen Q., Bian J. Hydrate-based CO2 sequestration technology: Feasibilities, mechanisms, influencing factors, and applications // J. Nat. Gas. Sci. Eng. 2022. V. 219. Article 111121; DOI: 10.1016/j.petrol.2022.111121
- Muhammad H. A., Lee G., Cho J., Bhatti U. H., Baik Y-J., Lee B. Design and optimization of CO2 pressurization system integrated with a supercritical CO2 power cycle for the CO2 capture and storage system // Energy Convers. Manag. 2019. V. 195. P. 609–619; DOI: 10.1016/j.enconman.2019.05.029
- Chang R., Choi D., Kim M. H., Park Y. Tuning crystal polymorphisms and structural investigation of precipitated calcium carbonates for CO2 mineralization // ACS Sustain. Chem. Eng. 2016. V. 5, N 2. P. 1659–1667; DOI: 10.1021/acssuschemeng.6b02411
- Заводовский А. Г., Мадыгулов М. Ш., Решетников А. М. Кинетика роста газогидрата Фреона12 при термоциклировании образца // Криосфера Земли. 2017. Т. 21, № 5. С. 55–62; DOI: 10.21782/KZ1560-7496-2017-5(55-62)
- Mac Dowell N., Fennell P. S., Shah N., Maitland G. C. The role of CO2 capture and utilization in mitigating climate change // Nat. Clim. Chang. 2017. V. 7. P. 243–249; DOI: 10.1038/nclimate3231
- Massah M., Sun D., Sharifi H., Englezos P. Demonstration of gas-hydrate assisted carbon dioxide storage through horizontal injection in lab-scale reservoir // J. Chem. Thermodyn. 2018. V. 117. P. 106–112; DOI: 10.1016/j.jct.2017.09.019
- Veluswamy H. P., Kumar A., Seo Y., Lee J. D., Linga P. A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates // Appl. Energy. 2018. V. 216. P. 262–285; DOI: 10.1016/j.apenergy.2018.02.059
- Kim S., Santamarina J. C. Engineered CO2 injection: The use of surfactants for enhanced sweep efficiency // Int. J. Greenh. Gas Control. 2014. V. 20. P. 324–332; DOI: 10.1016/j.ijggc.2013.11.018
- Hassanpouryouzband A., Yang J., Tohidi B., Chuvilin E., Istomin V., Bukhanov B. Geological CO2 capture and storage with flue gas hydrate formation in frozen and unfrozen sediments: Method development, real time-scale kinetic characteristics, efficiency, and clathrate structural transition // ACS Sustain. Chem. Eng. 2019. V. 7, N 5. P. 5338–5345; DOI: 10.1021/acssuschemeng.8b06374
- Истомин В. А., Якушев В. С. Газовые гидраты в природных условиях. М.: Недра, 1992.
- Chatti I., Delahaye A., Fournaison L., Petitet J-P. Benefits and drawbacks of clathrate hydrates: A review of their areas of interest // Energy Convers. Manag. 2005. V. 46, N 9-10. P. 1333–1343; DOI: 10.1016/j.enconman.2004.06.032
- Богоявленский В. И., Янчевская А. С., Богоявленский И. В., Кишанков А. В. Газовые гидраты на акваториях Циркумарктического региона // Арктика: экология и экономика. 2018. № 3(31). С. 42–55; DOI: 10.25283/2223-4594-2018-3-42-55
- Цыпкин Г. Г. Образование гидрата при инжекции жидкой двуокиси углерода в пласт, насыщенный метаном и водой // Изв. РАН. МЖГ. 2016. № 5. С. 99–107; DOI: 10.7868/S0568528116050157
- Pandey Sh., Solms N. Hydrate stability and methane recovery from gas hydrate through CH4-CO2 replacement in different mass transfer scenarios // Energies. 2019. V. 12, N 12. Article 2309; DOI: 10.3390/en12122309
- Khasanov M. K., Rafikova G. R., Musakaev N. G. Mathematical model of carbon dioxide injection into a porous reservoir saturated with methane and its gas hydrate // Energies. 2020. V. 13, N 2. Article 440; DOI: 10.3390/en13020440
- Goel N. In situ methane hydrate dissociation with carbon dioxide sequestration: Current knowledge and issues // J. Pet. Sci. Eng. 2006. V. 51, N 3–4. P. 169–184; DOI: 10.1016/j.petrol.2006.01.005
- Ndlovu P., Babaee S., Naidoo P. Review on CH4-CO2 replacement for CO2 sequestration and CH4/CO2 hydrate formation in porous media // Fuel. 2022. V. 320. Article 123795; DOI: 10.1016/j.fuel.2022.123795
- Espinoza D. N., Santamarina J. C. P-wave monitoring of hydrate-bearing sand during CH4-CO2 replacement // Int. J. Greenh. Gas Control. 2011. V. 5, N 4. P. 1031–1038; DOI: 10.1016/j.ijggc.2011.02.006
- Yuan Q., Sun C.-Y., Liu B., Wang X., Ma Z.-W., Ma Q.-L., Yang L.-Y., Chen G.-J., Li Q.-P., Li S., Zhang K. Methane recovery from natural gas hydrate in porous sediment using pressurized liquid CO2 // Energy Convers. Manag. 2013. V. 67. P. 257–264; DOI: 10.1016/j.enconman.2012.11.018
- Цыпкин Г. Г. Математическая модель конверсии гидрата CH4 в гидрат CO2 при больших скоростях инжекции углекислого газа в пласт // Докл. РАН. Физ., технич. науки. 2021. Т. 496, № 1. С. 60–64; DOI: 10.31857/S2686740020060188
- Шагапов В. Ш., Рафикова Г. Р., Хасанов М. К. К теории образования газогидрата в частично водонасыщенной пористой среде при нагнетании метана // Теплофиз. высок. темпер. 2016. Т. 54, № 6. С. 911–920; DOI: 10.7868/S004036441606017X
- Bondarev E. A., Rozhin I. I., Popov V. V., Argunova K. K. Underground storage of natural gas in hydrate state: Primary injection stage // J. Eng. Thermophys. 2018. V. 27. P. 221–231; DOI: 10.1134/S181023281802008X
- Шагапов В. Ш., Чиглинцева А. С., Русинов А. А., Хасанов М. К. К теории процесса нагнетания холодного газа в снежный массив, сопровождаемый гидратообразованием // Инж.-физ. журнал. 2018. Т. 91, № 6. С. 1605–1616; DOI: 10.1007/s10891-018-1889-6
- Musakaev N. G., Khasanov M. K. Solution of the problem of natural gas storages creating in gas hydrate state in porous reservoirs // Mathematics. 2020. V. 8, N 1. Article 36; DOI: 10.3390/math8010036
- Khasanov M. K., Musakaev N. G., Stolpovsky M. V., Kildibaeva S. R. Mathematical model of decomposition of methane hydrate during the injection of liquid carbon dioxide into a reservoir saturated with methane and its hydrate // Mathematics. 2020. V. 8, N 9. Article 1482; DOI: 10.3390/math8091482
- Баренблатт Г. И., Лобковский Л. И., Нигматулин Р. И. Математическая модель истечения газа из газонасыщенного льда и газогидратов // Докл. АН. 2016. Т. 470, № 4. С. 458–461; DOI: 10.7868/S0869565216280148
- Roostaie M., Leonenko Y. Analytical modeling of methane hydrate dissociation under thermal stimulation // J. Pet. Sci. Eng. 2020. V. 184. Article 106505; DOI: 10.1016/j.petrol.2019.106505
- Borodin S. L., Musakaev N. G., Belskikh D. S. Mathematical modeling of a non-isothermal flow in a porous medium considering gas hydrate decomposition: A review // Mathematics. 2022. V. 10, N 24. Article 4674; DOI: 10.3390/math10244674
- Басниев К. С., Кочина И. Н., Максимов В. М. Подземная гидромеханика. М.: Недра, 1993.
- Abu-Nab A. K., Koldoba A. V., Koldoba E. V., Poveshchenko Yu. A., Podryga V. O., Rahimly P. I., Bakeer A. E. On the theory of methane hydrate decomposition in a one-dimensional model in porous sediments: Numerical study // Mathematics. 2023. V. 11, N 2. Article 341; DOI: 10.3390/math11020341
- Nigmatulin R. I. Dynamics of Multiphase Media. Washington: Hemisphere Publ. Corp., 1991.
- Бородин С. Л., Бельских Д. С. Математическое моделирование равновесного полного замещения метана углекислым газом в газогидратном пласте при отрицательных температурах // Вестн. ТГУ. Физ.-мат. моделир. Нефть, газ, энергетика. 2020. Т. 6, № 2(22). С. 63–80; DOI: 10.21684/2411-7978-2020-6-2-63-80
- Попов В. В. Численное исследование разложения гидратов идеального газа в пласте при понижении давления и одновременном нагревании // Математич. заметки СВФУ. 2019. Т. 26, № 4. С. 83–97; DOI: 10.25587/SVFU.2019.39.76.008
- Konno Y., Masuda Y., Hariguchi Y., Kurihara M., Ouchi H. Key factors for depressurization-induced gas production from oceanic methane hydrates // Energy Fuels. 2010. V. 24, N 3. P. 1736–1744; DOI: 10.1021/ef901115h
- Sakamoto Y., Komai T., Miyazaki K., Tenma N., Yamaguchi T., Zyvoloski G. Laboratory-scale experiments of the methane hydrate dissociation process in a porous media and numerical study for the estimation of permeability in methane hydrate reservoir // J. Thermodyn. 2010. Article 452326; DOI: 10.1155/2010/452326
- Liang W., Wang J., Li P. Gas production analysis for hydrate sediment with compound morphology by a new dynamic permeability model // Appl. Energy. 2022. V. 322. Article 119434; DOI: 10.1016/j.apenergy.2022.119434
- Zhang P., Liu B., Hu L., Meegoda J. N. Coupled multiphase flow and pore compression computational model for extraction of offshore gas hydrates // Comput. Geotech. 2022. V. 145. Article 104671; DOI: 10.1016/j.compgeo.2022.104671
- Латонов В. В., Гуревич Г. Р. Расчёт коэффициента сжимаемости природного газа // Газ. промышленность. 1969. № 2. C. 7–9.
- Воронов В. П., Городецкий Е. Е., Григорьев Б. А., Муратов А. Р. Экспериментальное исследование процесса замещения метана в газовом гидрате диоксидом углерода // Научно-технич. сборн. Вести газ. науки. 2011. № 2(7). С. 235–248.
- Косарев В. И. 12 лекций по вычислительной математике (вводный курс). Изд. 3-е, испр. и доп. М.: Физматкнига, 2013.
- Musakaev N. G., Borodin S. L. To the question of the interpolation of the phase equilibrium curves for the hydrates of methane and carbon dioxide // MATEC Web Conf. 2017. V. 115. Article 05002; DOI: 10.1051/matecconf/201711505002
- Мусакаев Н. Г., Хасанов М. К. Математическое моделирование процесса образования газогидрата при закачке диоксида углерода в насыщенный метаном и льдом пласт // Криосфера Земли. 2016. Т. 20, № 3. С. 63–70; DOI: 10.21782/KZ1560-7496-2016-3(63-70)
Исследование выполнено при финансовой поддержке Российского научного фонда (проект № 24-29-00093; https://rscf.ru/project/24-29-00093/). Других источников финансирования проведения или руководства данным конкретным исследованием не было.
Н. Г. Мусакаев
- Тюменский филиал Института теоретической и прикладной механики им. С. А. Христиановича СО РАН,
ул. Таймырская, 74, г. Тюмень 625026, Россия
E-mail: musakaev68@yandex.ru
С. Л. Бородин
- Тюменский филиал Института теоретической и прикладной механики им. С. А. Христиановича СО РАН,
ул. Таймырская, 74, г. Тюмень 625026, Россия
E-mail: S.L.Borodin@yandex.ru
Статья поступила 24.06.2024 г.
После доработки — 21.11.2024 г.
Принята к публикации 11.12.2024 г.
Abstract:
An increase in the concentration of carbon dioxide in the atmosphere caused by the combustion of fuels has a negative impact on the current biosphere of the Earth. One way to get rid of excess carbon dioxide in the atmosphere is to capture and store it. Various methods for long-term storage of carbon dioxide are proposed, including in various geological formations in gas hydrate form, since gas hydrates have a number of unique properties, for example, it is possible to stably store a sufficiently large amount of gas in a small volume at a relatively low pressure. One of the objects for creating underground carbon dioxide storage facilities are depleted natural gas deposits, since they are well studied, the characteristics of the deposits, their geometric dimensions are known, and there are drilled wells. To study the patterns of the formation process of an underground gas hydrate carbon dioxide storage, the article presents a mathematical model of the process of carbon dioxide injection into a zonally heterogeneous porous reservoir, initially saturated with methane and water, accompanied by the formation of gas hydrate. Unlike previous works, the mathematical model additionally takes into account a number of factors: the solubility of carbon dioxide in water, zonal heterogeneity of a reservoir, heat exchange of the reservoir with the surrounding rocks impermeable to matter, filtration of water and gas. Numerical solutions of the problem were constructed to describe the distribution of parameters (pressure, temperature, carbon dioxide hydrate saturation) in the reservoir.
References:
- S. Misyura, P. Strizhak, A. Meleshkin, V. Morozov, O. Gaidukova, N. Shlegel, and M. Shkola, “A review of gas capture and liquid separation technologies by CO2 gas hydrate,” Energies 16 (8), 3318 (2023). https://doi.org/10.3390/en16083318
- Measurements from the Mauna Loa Weather Observatory. ftp://aftp.cmdl.noaa.gov/products/trends/CO2/CO2_mm_mlo.txt.
- V. Feyzi and V. Mohebbi, “Experimental study and modeling of the kinetics of carbon-dioxide hydrate formation and dissociation: A mass transfer limited kinetic approach,” J. Nat. Gas. Sci. Eng. 77, 103273 (2020). https://doi.org/10.1016/j.jngse.2020.103273
- X. Cao, H. Wang, K. Yang, S. Wu, Q. Chen, and J. Bian, “Hydrate-based CO2 sequestration technology: Feasibilities, mechanisms, influencing factors, and applications,” J. Nat. Gas. Sci. Eng. 219, 111121 (2022). https://doi.org/10.1016/j.petrol.2022.111121
- H. A. Muhammad, G. Lee, J. Cho, U. H. Bhatti, Y-J. Baik, and B. Lee, “Design and optimization of CO2 pressurization system integrated with a supercritical CO2 power cycle for the CO2 capture and storage system,” Energy Convers. Manage. 195, 609–619 (2019). https://doi.org/10.1016/j.enconman.2019.05.029
- R. Chang, D. Choi, M. H. Kim, and Y. Park, “Tuning crystal polymorphisms and structural investigation of precipitated calcium carbonates for CO2 mineralization,” ACS Sustain. Chem. Eng. 5 (2), 1659–1667 (2016). https://doi.org/10.1021/acssuschemeng.6b02411
- A. G. Zavodovskii, M. Sh. Madygulov, and A. M. Reshetnikov, “Kinetics of Freon-12 gas hydrate growth during sample thermal cycling,” Kriosfera Zemli 21 (5), 55–62 (2017) [in Russian]. https://doi.org/10.21782/KZ1560-7496-2017-5(55-62)
- N. Mac Dowell, P. S. Fennell, N. Shah, and G. C. Maitland, “The role of CO2 capture and utilization in mitigating climate change,” Nat. Clim. Chang. 7, 243–249 (2017). https://doi.org/10.1038/nclimate3231
- M. Massah, D. Sun, H. Sharifi, and P. Englezos, “Demonstration of gas-hydrate assisted carbon dioxide storage through horizontal injection in lab-scale reservoir,” J. Chem. Thermodyn. 117, 106–112 (2018). https://doi.org/10.1016/j.jct.2017.09.019
- H. P. Veluswamy, A. Kumar, Y. Seo, J. D. Lee, and P. Linga, “A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates,” Appl. Energy 216, 262–285 (2018). https://doi.org/10.1016/j.apenergy.2018.02.059
- S. Kim and J. C. Santamarina, “Engineered CO2 injection: The use of surfactants for enhanced sweep efficiency,” Int. J. Greenh. Gas Control 20, 324–332 (2014). https://doi.org/10.1016/j.ijggc.2013.11.018
- A. Hassanpouryouzband, J. Yang, B. Tohidi, E. Chuvilin, V. Istomin, and B. Bukhanov, “Geological CO2 capture and storage with flue gas hydrate formation in frozen and unfrozen sediments: Method development, real time-scale kinetic characteristics, efficiency, and clathrate structural transition,” ACS Sustain. Chem. Eng. 7 (5), 5338–5345 (2019). https://doi.org/10.1021/acssuschemeng.8b06374
- V. A. Istomin and V. S. Yakushev, Gas Hydrates in Natural Conditions (Nedra, Moscow, 1992) [in Russian].
- I. Chatti, A. Delahaye, L. Fournaison, and J-P. Petitet, “Benefits and drawbacks of clathrate hydrates: A review of their areas of interest,” Energy Convers. Manage. 46 (9–10), 1333–1343 (2005). https://doi.org/10.1016/j.enconman.2004.06.032
- V. I. Bogoyavlenskii, A. S. Yanchevskaya, I. V. Bogoyavlenskii, and A. V. Kishankov, “Gas hydrates in the waters of the circumarctic region,” Arktika: Ekol. Ekon. 3 (31), 42–55 (2018) [in Russian]. https://doi.org/10.25283/2223-4594-2018-3-42-55
- G. G. Tsypkin, “Formation of hydrate in injection of liquid carbon dioxide into a reservoir saturated with methane and water,” Fluid Dyn. 51 (5), 672–679 (2016).
- Sh. Pandey and N. Solms, “Hydrate stability and methane recovery from gas hydrate through CH4–CO2 replacement in different mass transfer scenarios,” Energies 12 (12), 2309 (2019). https://doi.org/10.3390/en12122309
- M. K. Khasanov, G. R. Rafikova, and N. G. Musakaev, “Mathematical model of carbon dioxide injection into a porous reservoir saturated with methane and its gas hydrate,” Energies 13 (2), 440 (2020). https://doi.org/10.3390/en13020440
- N. Goel, “In situ methane hydrate dissociation with carbon dioxide sequestration: Current knowledge and issues,” J. Pet. Sci. Eng. 51 (3–4), 169–184 (2006). https://doi.org/10.1016/j.petrol.2006.01.005
- P. Ndlovu, S. Babaee, and P. Naidoo, “Review on CH4–CO2 replacement for CO2 sequestration and CH4/CO2 hydrate formation in porous media,” Fuel 320, 123795 (2022). https://doi.org/10.1016/j.fuel.2022.123795
- D. N. Espinoza and J. C. Santamarina, “P-wave monitoring of hydrate-bearing sand during CH4–CO2 replacement,” Int. J. Greenhouse Gas Control 5 (4), 1031–1038 (2011). https://doi.org/10.1016/j.ijggc.2011.02.006
- Q. Yuan, C.-Y. Sun, B. Liu, X. Wang, Z.-W. Ma, Q.-L. Ma, L.-Y. Yang, G.-J. Chen, Q.-P. Li, S. Li, and K. Zhang, “Methane recovery from natural gas hydrate in porous sediment using pressurized liquid CO2,” Energy Convers. Manage. 67, 257–264 (2013). https://doi.org/10.1016/j.enconman.2012.11.018
- G. G. Tsypkin, “Mathematical model of conversion of CH4 hydrate to CO2 hydrate at high rates of carbon dioxide injection into a reservoir,” Dokl. Phys. 66 (1), 30–33 (2021). https://doi.org/10.31857/S2686740020060188
- V. Sh. Shagapov, G. R. Rafikova, and M. K. Khasanov, “On the theory of formation of gas hydrate in partially water-saturated porous medium when injecting methane,” High Temperature 54 (6), 858–866 (2016). https://doi.org/10.7868/S004036441606017X
- E. A. Bondarev, I. I. Rozhin, V. V. Popov, and K. K. Argunova, “Underground storage of natural gas in hydrate state: Primary injection stage,” J. Eng. Thermophys. 27, 221–231 (2018). https://doi.org/10.1134/S181023281802008X
- V. Sh. Shagapov, A. S. Chiglintseva, A. A. Rusinov, and M. K. Khasanov, “To the theory of the process of cold gas injection into a snow massif, accompanied by hydrate formation,” Inzh.-Fiz. Zh. 91 (6), 1605– 1616 (2018) [in Russian]. https://doi.org/10.1007/s10891-018-1889-6
- N. G. Musakaev and M. K. Khasanov, “Solution of the problem of natural gas storages creating in gas hydrate state in porous reservoirs,” Mathematics 8 (1), 36 (2020). https://doi.org/10.3390/math8010036
- M. K. Khasanov, N. G. Musakaev, M. V. Stolpovsky, and S. R. Kildibaeva, “Mathematical model of decomposition of methane hydrate during the injection of liquid carbon dioxide into a reservoir saturated with methane and its hydrate,” Mathematics 8 (9), 1482 (2020). https://doi.org/10.3390/math8091482
- G. I. Barenblatt, L. I. Lobkovsky, and R. I. Nigmatulin, “A mathematical model of gas outflow from gas-saturated ice and gas hydrates,” Dokl. Earth Sci. 470 (2), 1046–1049 (2016). https://doi.org/10.7868/S0869565216280148
- M. Roostaie and Y. Leonenko, “Analytical modeling of methane hydrate dissociation under thermal stimulation,” J. Pet. Sci. Eng. 184, 106505 (2020). https://doi.org/10.1016/j.petrol.2019.106505
- S. L. Borodin, N. G. Musakaev, and D. S. Belskikh, “Mathematical modeling of a non-isothermal flow in a porous medium considering gas hydrate decomposition: A review,” Mathematics 10 (24), 4674 (2022). https://doi.org/10.3390/math10244674
- K. S. Basniev, I. N. Kochina, and V. M. Maksimov, Underground Hydromechanics (Nedra, Moscow, 1993) [in Russian].
- A. K. Abu-Nab, A. V. Koldoba, E. V. Koldoba, Yu. A. Poveshchenko, V. O. Podryga, P. I. Rahimly, and A. E. Bakeer, “On the theory of methane hydrate decomposition in a one-dimensional model in porous sediments: Numerical study,” Mathematics 11 (2), 341 (2023). https://doi.org/10.3390/math11020341
- R. I. Nigmatulin, Dynamics of Multiphase Media (Hemisphere, Washington, 1991).
- S. L. Borodin and D. S. Bel’skikh, “Mathematical modeling of equilibrium complete substitution of methane with carbon dioxide in a gas hydrate reservoir at negative temperatures,” Vestn. TGU. Fiz.- Mat. Model. Neft’ Gaz Energ. 6 (2(22)), 63–80 (2020) [in Russian]. https://doi.org/10.21684/2411-7978- 2020-6-2-63-80
- V. V. Popov, “Numerical study of the decomposition of ideal gas hydrates in a reservoir with decreasing pressure and simultaneous heating,” Mat. Zam. SVFU 26 (4), 83–97 (2019) [in Russian]. https://doi.org/10.25587/SVFU.2019.39.76.008
- Y. Konno, Y. Masuda, Y. Hariguchi, M. Kurihara, and H. Ouchi, “Key factors for depressurizationinduced gas production from oceanic methane hydrates,” Energy Fuels 24 (3), 1736–1744 (2010). https://doi.org/10.1021/ef901115h
- Y. Sakamoto, T. Komai, K. Miyazaki, N. Tenma, T. Yamaguchi, and G. Zyvoloski, “Laboratory-scale experiments of the methane hydrate dissociation process in a porous media and numerical study for the estimation of permeability in methane hydrate reservoir,” J. Thermodyn., 452326 (2010). https://doi.org/10.1155/2010/452326
- W. Liang, J. Wang, AND P. Li, “Gas production analysis for hydrate sediment with compound morphology by a new dynamic permeability model,” Appl. Energy 322, 119434 (2022). https://doi.org/10.1016/j.apenergy.2022.119434
- P. Zhang, B. Liu, L. Hu, and J. N. Meegoda, “Coupled multiphase flow and pore compression computational model for extraction of offshore gas hydrates,” Comput. Geotech. 145, 104671 (2022). https://doi.org/10.1016/j.compgeo.2022.104671
- V. V. Latonov and G. R. Gurevich, “Calculation of the compressibility coefficient of natural gas,” Gaz. Prom-st. (2), 7–9 (1969) [in Russian].
- V. P. Voronov, E. E. Gorodetskii, B. A. Grigoriev, and A. R. Muratov, “Experimental study of the process of methane substitution in gas hydrate with carbon dioxide. Nauchno-Tekh. Sb. Vesti Gaz Nauki 2 (7), 235–248 (2011) [in Russian].
- V. I. Kosarev, 12 Lectures on Computational Mathematics (Introductory Course) (Fizmatkniga, Moscow, 2013) [in Russian]. 44. N. G. Musakaev and S. L. Borodin, “To the question of the interpolation of the phase equilibrium curves for the hydrates of methane and carbon dioxide,” MATEC Web Conf. 115, 05002 (2017). https://doi.org/10.1051/matecconf/201711505002
- N. G. Musakaev and M. K. Khasanov, “Mathematical modeling of the process of gas hydrate formation during injection of carbon dioxide into a formation saturated with methane and ice,” Kriosf. Zemli 20 (3), 63–70 (2016) [in Russian]. https://doi.org/10.21782/KZ1560-7496-2016-3(63-70)