Экстраполяция томографических изображений по данным многократного импульсного зондирования
Экстраполяция томографических изображений по данным многократного импульсного зондирования
Аннотация:
В рамках математической модели, основанной на интегро-дифференциальном уравнении переноса излучения, предложен новый экстраполяционный подход к проблеме повышения качества томографических изображений путём серийного облучения среды импульсами различной длительности. Результаты численного моделирования на цифровом тестовом фантоме продемонстрировали высокую эффективность алгоритма для подавления паразитного влияния рассеянного излучения и повышения контрастности изображений.
Литература:
- Withers P. J., Bouman C., Carmignato S., Cnudde V., Grimaldi D., Hagen C. K., Maire E., Manley M., Du Plessis A., Stock S. R. X-ray computed tomography // Nat. Rev. Methods Primers. 2021. V. 1, N 1. Article 18.
- Abhisheka B., Biswas S. K., Purkayastha B., Das D., Escargueil A. Recent trend in medical imaging modalities and their applications in disease diagnosis: a review // Multimed. Tools. Appl. 2023. V. 83. P. 1–36.
- Altaf F., Islam S. M., Akhtar N., Janjua N. K. Going deep in medical image analysis: concepts, methods, challenges, and future directions // IEEE Access. 2019. N 7. P. 99540–99572.
- Kalender W. A. Computed Tomography: Fundamentals, System Technology, Image Quality, Applications. Erlangen: Publicis, 2011.
- Mazurov A. I., Potrakhov N. N. Effect of Scattered X-Ray Radiation on Imaging Quality and Techniques for Its Suppression // Biomed. Eng. 2015. V. 48. P. 241–245.
- Аниконов Д. С. Единственность определения коэффициента уравнения переноса при специальном типе источника // Доклады АН СССР. 1985. Т. 284, № 5. С. 1033–1037.
- Anikonov D. S., Prokhorov I. V., Kovtanyuk A. E. Investigation of scattering and absorbing media by the methods of X-ray tomography // J. Inverse Ill-Posed Probl. 1993. V. 1, N 4. P. 259–282.
- Antyufeev V. S., Bondarenko A. N. X-ray tomography in scattering media // SIAM J. Appl. Math. 1996. V. 56, N 2. P. 573–587.
- Kovtanyuk A. E., Prokhorov I. V. Tomography problem for the polarized-radiation transfer equation // J. Inverse Ill-Posed Probl. 2006. V. 14, N 6. P. 609–620.
- Prokhorov I. V., Yarovenko I. P., Nazarov V. G. Optical tomography problems at layered media // Inverse Probl. 2008. V. 24, N 2. Article 025019.
- Zhao C., Chen X., Ouyang L., Wang J., Jin M. Robust moving-blocker scatter correction for conebeam computed tomography using multiple-view information // PLOS ONE. 2017. V. 12, N 12. Article 0189620.
- Altunbas C., Park Y., Yu Z., Gopal A. A unified scatter rejection and correction method for cone beam computed tomography // Med. Phys. 2021. V. 48, N 3. P. 1211–1225.
- Blinov A. B., Blinov N. N. X-Ray Image Improvement by Filtering of Scattered Radiation // Biomed. Eng. 2014. V. 47. P. 235–238.
- Яровенко И. П. Метод решения задачи томографии, основанный на специфике комптоновского рассеяния // Вычисл. технол. 2012. Т. 17. С. 99–109.
- Fetisov G. V. X-ray diffraction methods for structural diagnostics of materials: progress and achievements // Phys.–Usp. 2020. V. 63, N 1. P. 2–32.
- Prokhorov I. V., Yarovenko I. P. Determination of the attenuation coefficient for the nonstationary radiative transfer equation // Comput. Math. Math. Phys. 2021. V. 61, N 12. P. 2088–2101.
- Maier J., Sawall S., Knaup M., Kachelrie M. Deep Scatter Estimation (DSE): Accurate Real-Time Scatter Estimation for X-Ray CT Using a Deep Convolutional Neural Network // J. Nondestr. Eval. 2018. V. 37, N 57. Article 9.
- Прохоров И. В., Яровенко И. П. Повышение качества томографических изображений при облучении среды импульсами различной длительности // Доклады РАН. Матем., информ., проц. упр. 2022. Т. 505. С. 71–78.
- Yarovenko I. P., Prokhorov I. V. An extrapolation method for improving the quality of tomographic images using multiple short-pulse irradiations // J. Inverse Ill-posed Probl. 2024. V. 32, N 1. P. 57–74.
- Natterer F. The Mathematics of Computerized Tomography. Chichester: Wiley, 1986.
- Herman G., Natterer F. Mathematical Aspects of Computerized Tomography. Oberwolfach: Springer Science & Business Media, 2013.
- Yarovenko I. P., Kazantsev I. G An extrapolation method for improving the linearity of CT-values in X-ray pulsed tomography / Far Eastern Math. J. 2022. V. 22, N 2. P. 269–275.
- Choi J., Dong B., Zhang X. Limited tomography reconstruction via tight frame and simultaneous sinogram extrapolation // J. Comput. Math. 2016. V. 34. P. 575–589.
- Gao H., Zhang L., Chen Z., Xing Y., Cheng J. An Extrapolation Method for Image Reconstruction from a Straight-line Trajectory // IEEE Nucl. Sci. Symp. Conf. Rec. 2006. N 4. P. 2304–2308.
- Clark D. P., Schwartz F. R., Marin D., Ramirez-Giraldo J. C., Badea C. T. Deep learning based spectral extrapolation for dual-source, dual-energy x-ray computed tomography // Med. Phys. 2020. V. 47, N 9. P. 4150–4163.
- Lozovoy V., Rasskazov G., Ryabtsev A., Dantus M. Phase-only synthesis of ultrafast stretched square pulses // Opt. Express. 2015. V. 23. Article 27105.
- Ершов Ю. И., Шихов С. Б. Математические основы теории переноса. М.: Атомиздат, 1985.
- Владимиров В. С. Математические задачи односкоростной теории переноса частиц // Тр. МИАН СССР. 1961. V. 61. P. 3–158.
- Гермогенова Т. А. Локальные свойства решений уравнения переноса. М.: Наука, 1986.
- Черчиньяни К. Теория и приложения уравнения Больцмана. М.: Мир, 1978.
- Новиков В. М., Шихов С. Б. Теория параметрического воздействия на перенос нейтронов. М.: Энергоиздат, 1982.
- Agoshkov V. I. Boundary value problems for transport equations. Modeling and Simulation in Science, Engineering and Technology. Basel: Birkhauser, 1998.
- Nazarov V. G., Prokhorov I. V., Yarovenko I. P. Identification of an Unknown Substance by the Methods of Multi-Energy Pulse X-ray Tomography // Mathematics. 2023. V. 11, N 15. Article 3263.
- Mah P., Reeves T. E., McDavid W. D. Deriving Hounsfield units using grey levels in cone beam computed tomography // Dentomaxillofac. Radiol. 2010. V. 39. P. 323–335.
- Михайлов Г. А., Медведев И. Н. Оптимизация весовых алгоритмов статистического моделирования. Новосибирск: Омега Принт, 2011.
- Osipov S., Chakhlov S„ Zhvyrblia V., Sednev D., Osipov O., Usachev E. The Nature of Metal Artifacts in X-ray Computed Tomography and Their Reduction by Optimization of Tomography Systems Parameters // Appl. Sci. 2023. V. 13. Article 2666.
- Zhang Y., Yu H. Convolutional Neural Network Based Metal Artifact Reduction in X-Ray Computed Tomography // IEEE Trans. Med. Imaging. 2017. V. 37. P. 1370–1381.
- Wang Z., Bovik A., Sheikh H., Simoncelli E. Image Quality Assessment: From Error Visibility to Structural Similarity // IEEE Trans. Image Process. 2004. V. 13. P. 600–612.
Исследование выполнено при финансовой поддержке Российского научного фонда (проект № 23-21-00378; https://rscf.ru/project/23-21-00378/).
И. П. Яровенко
- Институт прикладной математики ДВО РАН,
ул. Радио, 7, г. Владивосток 690041, Россия
E-mail: yarovenko@iam.dvo.ru
П. А. Ворновских
- Институт прикладной математики ДВО РАН,
ул. Радио, 7, г. Владивосток 690041, Россия
E-mail: vornovskikh_pa@dvfu.ru
И. В. Прохоров
- Институт прикладной математики ДВО РАН,
ул. Радио, 7, г. Владивосток 690041, Россия
E-mail: prokhorov@iam.dvo.ru
Статья поступила 14.01.2024 г.
После доработки — 02.05.2024 г.
Принята к публикации 22.05.2024 г.
Abstract:
This paper proposes a new approach to improving image quality in pulsed X-ray tomography. The method is based on establishing a functional dependence of the reconstructed images on the duration of the probing pulses and applying an extrapolation procedure. The numerical experiments demonstrated that the developed algorithm effectively suppresses the influence of scattered radiation and significantly increases image contrast. The proposed alternative approach allows substantially increasing the stability of the method even for media containing strong scattering inhomogeneities and with a significant level of noise in the projection data. In addition, the algorithm has greater stability to errors in the source data caused by an increase in the duration of the probing pulses. The numerical experiments confirmed the high efficiency of the extrapolation tomography algorithm for recovering the internal structure of the test object.
References:
- P. J. Withers, C. Bouman, S. Carmignato, V. Cnudde, D. Grimaldi, C. K. Hagen, E. Maire, M. Manley, A. Du Plessis, and S. R. Stockm, “X-ray computed tomography,” Natl. Rev. Methods Primers 1 (1), 18 (2021).
- B. Abhisheka, S. K. Biswas, B. Purkayastha, D. Das, and A. Escargueil, “Recent trend in medical imaging modalities and their applications in disease diagnosis: A review,” Multimedia Tools. Appl. 83, 1–36 (2023).
- F. Altaf, S. M. Islam, N. Akhtar, and N. K. Janjua, “Going deep in medical image analysis: concepts, methods, challenges, and future directions,” IEEE Access (7), 99540–99572 (2019).
- W. A. Kalender, Computed Tomography: Fundamentals, System Technology, Image Quality, Applications (Publicis, Erlangen, 2011).
- A. I. Mazurov and N. N. Potrakhov, “Effect of scattered X-ray radiation on imaging quality and techniques for its suppression,” Biomed. Eng. 48, 241–245 (2015).
- D. S. Anikonov, “Uniqueness of determining the coefficient of the transfer equation for a special type of source,” Dokl. Akad. Nauk SSSR 284 (5), 1033–1037 (1985) [in Russian].
- D. S. Anikonov, I. V. Prokhorov, and A. E. Kovtanyuk, “Investigation of scattering and absorbing media by the methods of X-ray tomography,” J. Inverse Ill-Posed Probl. 1 (4), 259–282 (1993).
- V. S. Antyufeev and A. N. Bondarenko, “X-ray tomography in scattering media,” SIAM J. Appl. Math. 56 (2), 573–587 (1996).
- A. E. Kovtanyuk and I. V. Prokhorov, “Tomography problem for the polarized-radiation transfer equation,” J. Inverse Ill-Posed Probl. 14 (6), 609–620 (2006).
- I. V. Prokhorov, I. P. Yarovenko, and V. G. Nazarov, “Optical tomography problems at layered media,” Inverse Probl. 24 (2), 025019 (2008).
- C. Zhao, X. Chen, L. Ouyang, J. Wang, and M. Jin, “Robust moving-blocker scatter correction for conebeam computed tomography using multiple-view information,” PLOS ONE 12 (12), 0189620 (2017).
- C. Altunbas, Y. Park, Z. Yu, and A. Gopal, “A unified scatter rejection and correction method for cone beam computed tomography,” Med. Phys. 48 (3), 1211–1225 (2021).
- A. B. Blinov and N. N. Blinov, “The method for solving tomography problem based on the specifics of the Compton scattering,” Biomed. Eng. 47, 235–238 (2014).
- I. P. Yarovenko, “X-Ray image improvement by filtering of scattered radiation,” Vychisl. Tekhnol. 17, 99–109 (2012) [in Russian].
- G. V. Fetisov, “X-ray diffraction methods for structural diagnostics of materials: Progress and achievements,” Phys.-Usp. 63 (1), 2–32 (2020).
- I. V. Prokhorov and I. P. Yarovenko, “Determination of the attenuation coefficient for the nonstationary radiative transfer equation,” Comput. Math. Math. Phys. 61 (12), 2088–2101 (2021).
- J. Maier, S. Sawall, M. Knaup, and M. Kachelrie, “Deep Scatter Estimation (DSE): Accurate real-time scatter estimation for X-Ray CT using a deep convolutional neural network,” J. Nondestr. Eval. 37 (57), 9 (2018).
- I. V. Prokhorov and I. P. Yarovenko, “Improving the quality of tomographic images of a medium using irradiation with pulses of different duration,” Dokl. Ross. Akad. Nauk Inf. Protsess. Upr. 505, 71–78 (2022) [Dokl. Math. 106 (1), 272–278 (2022)].
- I. P. Yarovenko and I. V. Prokhorov, “An extrapolation method for improving the quality of tomographic images using multiple short-pulse irradiations,” J. Inverse Ill-Posed Probl. 32 (1), 57–74 (2024).
- F. Natterer, The Mathematics of Computerized Tomography (Wiley, Chichester, 1986).
- G. Herman and F. Natterer, Mathematical Aspects of Computerized Tomography (Springer Science & Business Media, Oberwolfach, 2013).
- I. P. Yarovenko and I. G. Kazantsev, “An extrapolation method for improving the linearity of CT-values in X-ray pulsed tomography,” Far East. Math. J. 22 (2), 269–275 (2022).
- J. Choi, B. Dong, and X. Zhang, “Limited tomography reconstruction via tight frame and simultaneous sinogram extrapolation,” J. Comput. Math. 34, 575–589 (2016).
- H. Gao, L. Zhang, Z. Chen, Y. Xing, and J. Cheng, “An extrapolation method for image reconstruction from a straight-line trajectory,” IEEE Nucl. Sci. Symp. Conf. Rec. (4), 2304–2308 (2006).
- D. P. Clark, F. R. Schwartz, D. Marin, J. C. Ramirez-Giraldo, and C. T. Badea, “Deep learning based spectral extrapolation for dual-source, dual-energy X-ray computed tomography,” Med. Phys. 47 (9), 4150–4163 (2020).
- V. Lozovoy, G. Rasskazov, A. Ryabtsev, and M. Dantus, “Phase-only synthesis of ultrafast stretched square pulses,” Opt. Express 23, 27105 (2015).
- Yu. I. Ershov and S. B. Shikhov, Mathematical Foundations of Transfer Theory (Atomizdat, Moscow, 1985) [in Russian].
- V. S. Vladimirov, “Mathematical problems of single-velocity theory of particle transport,” Tr. MIAN SSSR 61, 3–158 (1961) [in Russian].
- T. A. Germogenova, Local Properties of Solutions to the Transport Equation (Nauka, Moscow, 1986) [in Russian].
- C. Cercignani, Theory and Application of the Boltzmann Equation (Scottish Academic Press, Edinburgh— London, 1975; Mir, Moscow, 1978).
- V. M. Novikov and S. B. Shikhov, Theory of Parametric Influence on Neutron Transport (Energoizdat, Moscow, 1982) [in Russian].
- V. I. Agoshkov, Boundary Value Problems for Transport Equations. Modeling and Simulation in Science, Engineering and Technology (Birkh¨auser, Basel, 1998).
- V. G. Nazarov, I. V. Prokhorov, and I. P. Yarovenko, “Identification of an unknown substance by the methods of multi-energy pulse X-ray tomography,” Mathematics 11 (15), 3263 (2023).
- P. Mah, T. E. Reeves, and W. D. McDavid, “Deriving Hounsfield units using grey levels in cone beam computed tomography,” Dentomaxillofac. Radiol. 39, 323–335 (2010).
- G. A. Mikhailov and I. N. Medvedev, Optimization of Weight Algorithms of Statistical Modeling (Omega Print, Novosibirsk, 2011) [in Russian].
- S. Osipov, S. Chakhlov, V. Zhvyrblia, D. Sednev, O. Osipov, and E. Usachev, “The nature of metal artifacts in X-ray computed tomography and their reduction by optimization of tomography systems parameters,” Appl. Sci. 13, 2666 (2023).
- Y. Zhang and H. Yu, “Convolutional neural network based metal artifact reduction in X-ray computed tomography,” IEEE Trans. Med. Imaging 37, 1370–1381 (2017).
- Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).