Дробно-дифференциальный подход для численного моделирования электронно-индуцированной зарядки сегнетоэлектриков
Дробно-дифференциальный подход для численного моделирования электронно-индуцированной зарядки сегнетоэлектриков
Аннотация:
В работе предложена дробно-дифференциальная модификация математической модели процесса нестационарной зарядки полярных диэлектрических материалов в условиях облучения электронными пучками средних энергий. В основе математической формализации лежит сферически-симметричное диффузионно-дрейфовое уравнение с производной дробного порядка по времени. С использованием аппроксимации производной Капуто построена неявная конечно-разностная схема. В ППП Matlab разработана прикладная программа, реализующая сконструированный вычислительный алгоритм. Верификация приближенного решения задачи продемонстрирована на тест-примере. Представлены результаты вычислительных экспериментов по оценке характеристик полевых эффектов инжектированных зарядов в сегнетоэлектриках при вариации порядка дробного дифференцирования в субдиффузионных режимах.
Литература:
- Otten D. Mathematical models of reaction diffusion systems, their numerical solutions and the freezing method with Comsol Multiphysics. Bielefeld: Bielefeld University, 2000.
- Patankar S. V. Numerical heat transfer and fluid flow. Washington: Hemisphere Publ. Corp., 1980.
- Самарский А. А., Вабищевич П. Н. Численные методы решения задач конвекции-диффузии. М.: Книжный дом “ЛИБРОКОМ”, 2015.
- Kan T., Suzuki M. Uniform estimates and uniqueness of stationary solutions to the drift-diffusion model for semiconductors // Appl. Anal. 2019. V. 5, N 10. P. 1799–1810; DOI: 10.1080/00036811.2018.1460820
- Rekhviashvili S. S., Alikhanov A. A. Simulation of drift-diffusion transport of charge carriers in semiconductor layers with a fractal structure in an alternating electric field // Semiconductors. 2017. V. 51. P. 755–759; DOI: 10.1134/S1063782617060264
- He J., Tang S. H., Qin Y. Q., Dong P., Zhang H. Z., Kang C. H., Sun W. X., Shen Z. X. Two-dimensional structures of ferroelectric domain inversion in LiNbO3 by direct electron beam lithography // J. Appl. Phys. 2003. V. 93. P. 9943–9947; DOI: 10.1063/1.1575918
- Коханчик Л. С., Иржак Д. В. Формирование регулярных доменных структур и особенности переключения спонтанной поляризации в кристаллах танталата лития при дискретном облучении электронами // Физика твёрдого тела. 2010. Т. 52, № 2. С. 285–289.
- Рау Э. И., Евстафьева Е. Н., Адрианов М. В. Механизмы зарядки диэлектриков при их облучении электронными пучками средних энергий // Физика твёрдого тела. 2008. Т. 50, № 4. С. 599–607.
- Chezganov D. S., Kuznetsov D. K., Shur V. Ya. Simulation of spatial distribution of electric field after electron beam irradiation of MgO-doped LiNbO3 covered by resist layer // Ferroelectrics. 2016. V. 496. P. 70–78; DOI: 10.1080/00150193.2016.1157436
- Chan D. S. H., Sim K. S., Phang J. C. H. A simulation model for electron irradiation induced specimen charging in a scanning electron microscope // Scan. Microsc. 1993. V. 7, N 3. P. 847–859.
- Melchiger A., Hofmann S. Dynamic double layer model. Description of time dependent charging phenomena in insulators under electron beam irradiation // J. Appl. Phys. 1995. V. 78, N 10. P. 6224– 6232; DOI: 10.1063/1.360569
- Cazaux J. About the mechanisms of charging in EPMA, SEM, and ESEM with their time evolution // Microsc. Microanal. 2004. V. 10, N 6. P. 670–680; DOI: 10.1017/s1431927604040619
- Kotera M., Yamaguchi K., Suga H. Dynamic simulation of electron-beam-induced charging up of insulators // Jpn. J. Appl. Phys. 1999. V. 38, N 12S. P. 7176–7179; DOI: 10.1143/JJAP.38.7176
- Ohya K., Inai K., Kuwada H., Hauashi T., Saito M. Dynamic simulation of secondary electron emission and charging up of an insulting material // Surf. Coat. Technol. 2008. V. 202. P. 5310–5313; DOI: 10.1016/j.surfcoat.2008.06.008
- Maslovskaya A., Pavelchuk A. Simulation of dynamic charging processes in ferroelectrics irradiated with SEM // Ferroelectrics. 2015. V. 476, N 2. P. 157–167; DOI: 10.1080/00150193.2015.998111
- Kalmanovich V. V., Seregina E. V., Stepovich M. A. Comparison of analytical and numerical modeling of distributions of nonequilibrium minority charge carriers generated by a wide beam of medium-energy electrons in a two-layer semiconductor structure // J. Phys. Conf. Ser. 2020. V. 1479. Article 012116; DOI: 10.1088/1742-6596/1479/1/012116
- Raftari B. Self-consistence drift-diffusion-reaction model for the electron beam interaction with dielectric samples // J. Appl. Phys. 2015. V. 118. Article 204101; DOI: 10.1063/1.4936201
- Pavelchuk A. V., Maslovskaya A. G. Simulation of delay reaction-drift-diffusion system applied to charging effects in electron-irradiated dielectrics // J. Phys. Conf. Ser. 2019. V. 1163. Article 012009; DOI: 10.1088/1742-6596/1163/1/012009
- Бризицкий Р. В., Максимова Н. Н., Масловская А. Г. Теоретический анализ и численная реализация стационарной диффузионно-дрейфовой модели зарядки полярных диэлектриков // Журн. вычисл. математики и мат. физики. 2022. Т. 62, № 10. С. 1696–1706; DOI: 10.31857/S0044466922100039
- Борисов С. С., Грачев Е. А., Зайцев С. И. Моделирование поляризации диэлектрика в процессе облучения электронным пучком // Прикл. физика. 2004. № 1. С. 118–123.
- Uchaikin М., Sibatov R. Fractional kinetics in solids. Anomalous charge transport in semiconductors, dielectrics and nanosystems. Singapore: World Scientific, 2012.
- Holm S. Natural occurrence of fractional derivatives in physics // arXiv. 2023; DOI: 10.48550/arXiv.2305.07074
- Deng W., Hou R., Wang W., Xu P. Modeling Anomalous Diffusion. From Statistics to Mathematics. Singapore: World Scientific, 2020.
- Evangelista L. R., Lenzi E. K. Fractional Diffusion Equations and Anomalous Diffusion. Cambridge: Cambridge University Press, 2018.
- Мейланов Р. П., Садыков С. А. Фрактальная модель кинетики переключения поляризации в сегнетоэлектриках // Журн. техн. физики. 1999. Т. 69, № 5. С. 128–129.
- Galiyarova N. M. Fractal dielectric response of multidomain ferroelectrics from the irreversible thermodynamics standpoint // Ferroelectrics. 1999. V. 222, N 1. P. 381–387; DOI: 10.1080/00150199908014841
- Ducharne B., Sebald G., Guyomar D. Time fractional derivative for frequency effect in ferroelectrics // Proc. 18th IEEE Internat. Sympos. Appl. Ferroelectr. 2009. P. 1–4; DOI: 10.1109/ISAF.2009.5307619
- Wang X. Analytical solitary wave solutions of a time-fractional thin-film ferroelectric material equation involving beta-derivative using modified auxiliary equation method // Results Phys. 2023. V. 48. Article 106411; DOI: 10.1016/j.rinp.2023.106411
- Moroz L. I., Masslovskaya A. G. Numerical simulation of an anomalous diffusion process based on the higher-order accurate scheme // Math. Models Comput. Simul. 2021. V. 13, N 3. P. 492–501; DOI: 10.1134/S207004822103011X
- Maslovskaya A. G., Moroz L. I. Time-fractional Landau—Khalatnikov model applied to numerical simulation of polarization switching in ferroelectrics // Nonlinear Dyn. 2023. V. 111. P. 4543–4557; DOI: 10.1007/s11071-022-08071-5
- Moroz L. I., Maslovskaya A. G. Simulation of nonlinear pyroelectric response of ferroelectrics near phase transition: fractional differential approach // Mater. Sci. Forum. 2022. V. 992. P. 843–848; DOI: 10.4028/www.scientific.net/MSF.992.843
- Орешкин П. Т. Физика полупроводников и диэлектриков. М.: Высшая школа, 1977.
- Joy D. C. Monte Carlo modeling for electron microscopy and microanalysis. N. Y.: Oxford University Press, 1995.
- Meng R. Application of fractional calculus to modeling the non-linear behaviors of ferroelectric polymer composites: viscoelasticity and dielectricity // Membranes. 2021. V. 11. N 6. Article 409; DOI: 10.3390/membranes11060409
- Amadou Y., Justin M., Hubert M. B., Betchewe G., Doka S. Y., Crepin K. T. Fractional effects on solitons in a 1D array of rectangular ferroelectric nanoparticles // Waves Random Complex Media. 2020. V. 30. P 581–592; DOI: 10.1080/17455030.2018.1546062
- Guzelturk B., Yang T., Liu Y., Wei Ch.-Ch., Orenstein G., Trigo M., Zhou T., Diroll B. T., Holt M. V., Wen H., Chen L.-Q., Yang J.-Ch., Lindenberg A. M. Sub-nanosecond reconfiguration of ferroelectric domains in bismuth ferrite // Adv. Mater. 2023. V. 35. Article e2306029; DOI: 10.1002/adma.202306029
- Liu F., Meerschaert M. M., McGough R. J., Zhuang P., Liu Q. Numerical methods for solving the multi-term time-fractional wave-diffusion equation // Fract. Calc. Appl. Anal. 2013. V. 16. P. 9–25; DOI: 10.2478/s13540-013-0002-2
- Buckova Z., Ehrhardt M., Gunther M. Alternating direction explicit methods for convection diffusion equations // Acta Math. Univ. Comenianae. 2015. V. 84, N 2. P. 309–325.
Работа выполнена при финансовой поддержке Минобрнауки РФ (проект 122082400001-8). Других источников финансирования проведения или руководства данным конкретным исследованием не было.
Л. И. Мороз
- Амурский государственный университет,
Игнатьевское шоссе, 21, г. Благовещенск 675027, Россия
E-mail: lubovep@mail.ru
А. Г. Масловская
- Амурский государственный университет,
Игнатьевское шоссе, 21, г. Благовещенск 675027, Россия
E-mail: maslovskayaag@mail.ru
Статья поступила 04.09.2023 г.
После доработки 01.02.2024 г.
Принята к публикации 07.02.2024 г.
Abstract:
The paper proposes a fractional-differential modification of the mathematical model of the process of nonstationary charging of polar dielectric materials under conditions of irradiation with medium-energy electron beams. The mathematical formalization is based on a spherically symmetric diffusion-drift equation with a fractional time derivative. An implicit finite-difference scheme is constructed using the Caputo derivative approximation. An application program has been developed in Matlab software that implements the designed computational algorithm. Verification of an approximate solution of the problem is demonstrated using a test example. The results of computational experiments to evaluate the characteristics of field effects of injected charges in ferroelectrics when varying the order of fractional differentiation in subdiffusion regimes are presented.
References:
- D. Otten, Mathematical Models of Reaction Diffusion Systems, Their Numerical Solutions and the Freezing Method with Comsol Multiphysics (Bielefeld Univ., Bielefeld, 2000).
- S. V. Patankar, Numerical Heat Transfer and Fluid Flow (Hemisphere Publ., Washington, 1980).
- A. A. Samarskii and P. N. Vabishchevich, Numerical Methods for Solving Convection–Diffusion Problems (LIBROKOM, Moscow, 2015) [in Russian].
- T. Kan and M. Suzuki, “Uniform estimates and uniqueness of stationary solutions to the drift–diffusion model for semiconductors,” Appl. Anal. 5 (10), 1799–1810 (2019). https://doi.org/10.1080/00036811.2018.1460820
- S. S. Rekhviashvili and A. A. Alikhanov, “Simulation of drift-diffusion transport of charge carriers in semiconductor layers with a fractal structure in an alternating electric field,” Semiconductors 51, 755–759 (2017). https://doi.org/10.1134/S1063782617060264
- J. He, S. H. Tang, Y. Q. Qin, P. Dong, H. Z. Zhang, C. H. Kang, W. X. Sun, and Z. X. Shen, “Twodimensional structures of ferroelectric domain inversion in LiNbO3 by direct electron beam lithography,” J. Appl. Phys. 93, 9943–9947 (2003). https://doi.org/10.1063/1.1575918
- L. S. Kokhanchik and D. V. Irzhak, “Formation of regular domain structures and peculiarities of switching of the spontaneous polarization in lithium tantalate crystals during discrete electron irradiation,” Phys. Solid State 52, 306–310 (2010).
- E. I. Rau, E. N. Evstaf’eva, and M. V. Andrianov, “Mechanisms of charging of insulators under irradiation ´ with medium-energy electron beams,” Phys. Solid State 50, 621–630 (2008).
- D. S. Chezganov, D. K. Kuznetsov, and V. Ya. Shur, “Simulation of spatial distribution of electric field after electron beam irradiation of MgO-doped LiNbO3 covered by resist layer,” Ferroelectrics 496, 70–78 (2016). https://doi.org/10.1080/00150193.2016.1157436
- D. S. H. Chan, K. S. Sim, and J. C. H. Phang, “A simulation model for electron irradiation induced specimen charging in a scanning electron microscope,” Scan. Microsc. 7 (3), 847–859 (1993).
- A. Melchiger and S. Hofmann, “Dynamic double layer model. Description of time dependent charging phenomena in insulators under electron beam irradiation,” J. Appl. Phys. 78 (10), 6224–6232 (1995). https://doi.org/10.1063/1.360569
- J. Cazaux, “About the mechanisms of charging in EPMA, SEM, and ESEM with their time evolution,” Microsc. Microanal. 10 (6), 670–680 (2004). https://doi.org/10.1017/s1431927604040619
- M. Kotera, K. Yamaguchi, and H. Suga, “Dynamic simulation of electron-beam-induced charging up of insulators,” Jpn. J. Appl. Phys. 38 (12S), 7176–7179 (1999). https://doi.org/10.1143/JJAP.38.7176
- K. Ohya, K. Inai, H. Kuwada, T. Hauashi, and M. Saito, “Dynamic simulation of secondary electron emission and charging up of an insulting material,” Surf. Coat. Technol. 202, 5310–5313 (2008). https://doi.org/10.1016/j.surfcoat.2008.06.008
- A. Maslovskaya and A. Pavelchuk, “Simulation of dynamic charging processes in ferroelectrics irradiated with SEM,” Ferroelectrics 476 (2), 157–167 (2015). https://doi.org/10.1080/00150193.2015.998111
- V. V. Kalmanovich, E. V. Seregina, and M. A. Stepovich, “Comparison of analytical and numerical modeling of distributions of nonequilibrium minority charge carriers generated by a wide beam of mediumenergy electrons in a two-layer semiconductor structure,” J. Phys. Conf. Ser. 1479, 012116 (2020). https://doi.org/10.1088/1742-6596/1479/1/012116
- B. Raftari, “Self-consistence drift-diffusion-reaction model for the electron beam interaction with dielectric samples,” J. Appl. Phys. 118, 204101 (2015). https://doi.org/10.1063/1.4936201
- A. V. Pavelchuk and A. G. Maslovskaya, “Simulation of delay reaction-drift-diffusion system applied to charging effects in electron-irradiated dielectrics,” J. Phys. Conf. Ser. 1163, 012009 (2019). https://doi.org/10.1088/1742-6596/1163/1/012009
- R. V. Brizitskii, N. N. Maksimova, and A. G. Maslovskaya, “Theoretical analysis and numerical implementation of a stationary diffusion—drift model of polar dielectric charging,” Comput. Math. Math. Phys. 62 (10), 1680–1690 (2022). https://doi.org/10.1134/S0965542522100037
- S. S. Borisov, E. A. Grachev, and S. I. Zaitsev, “Modeling the polarization of a dielectric during irradiation with an electron beam,” Prikl. Fiz. (1), 118–123 (2004) [in Russian].
- M. Uchaikin and R. Sibatov, Fractional Kinetics in Solids. Anomalous Charge Transport in Semiconductors, Dielectrics and Nanosystems (World Sci., Singapore, 2012).
- S. Holm, “Natural occurrence of fractional derivatives in physics,” arXiv (2023). https://doi.org/10.48550/arXiv.2305.07074
- W. Deng, R. Hou, W. Wang, and P. Xu, Modeling Anomalous Diffusion. From Statistics to Mathematics (World Sci., Singapore, 2020).
- L. R. Evangelista and E. K. Lenzi, Fractional Diffusion Equations and Anomalous Diffusion (Cambridge Univ. Press, Cambridge, 2018).
- R. P. Meilanov and S. A. Sadykov, “Fractal model of polarization switching kinetics in ferroelectrics,” Zh. Tekh. Fiz. 69 (5), 128–129 (1999) [in Russian].
- N. M. Galiyarova, “Fractal dielectric response of multidomain ferroelectrics from the irreversible thermodynamics standpoint,” Ferroelectrics 222 (1), 381–387 (1999). https://doi.org/10.1080/00150199908014841
- B. Ducharne, G. Sebald, and D. Guyomar, “Time fractional derivative for frequency effect in ferroelectrics,” Proc. 18th IEEE Int. Symp. Appl. Ferroelectr. (2009), 1–4. https://doi.org/10.1109/ISAF.2009.5307619
- X. Wang, “Analytical solitary wave solutions of a time-fractional thin-film ferroelectric material equation involving beta-derivative using modified auxiliary equation method,” Results Phys. 48, 106411 (2023). https://doi.org/10.1016/j.rinp.2023.106411
- L. I. Moroz and A. G. Maslovskaya, “Numerical simulation of an anomalous diffusion process based on the higher-order accurate scheme,” Math. Models Comput. Simul. 13 (3), 492–501 (2021). https://doi.org/10.1134/S207004822103011X
- A. G. Maslovskaya and L. I. Moroz, “Time-fractional Landau–Khalatnikov model applied to numerical simulation of polarization switching in ferroelectrics,” Nonlinear Dyn. 111, 4543–4557 (2023). https://doi.org/10.1007/s11071-022-08071-5
- L. I. Moroz and A. G. Maslovskaya, “Simulation of nonlinear pyroelectric response of ferroelectrics near phase transition: Fractional differential approach,” Mater. Sci. Forum 992, 843–848 (2022). https://doi.org/10.4028/www.scientific.net/MSF.992.843
- P. T. Oreshkin, Physics of Semiconductors and Dielectrics (Vyssh. Shkola, Moscow, 1977) [in Russian].
- D. C. Joy, Monte Carlo Modeling for Electron Microscopy and Microanalysis (Oxford Univ. Press, New York, 1995).
- R. Meng, “Application of fractional calculus to modeling the non-linear behaviors of ferroelectric polymer composites: viscoelasticity and dielectricity,” Membranes 11 (6), 409 (2021). https://doi.org/10.3390/membranes11060409
- Y. Amadou, M. Justin, M. B. Hubert, G. Betchewe, S. Y. Doka, and K. T. Crepin, “Fractional effects on solitons in a 1D array of rectangular ferroelectric nanoparticles,” Waves Random Complex Media 30, 581–592 (2020). https://doi.org/10.1080/17455030.2018.1546062
- B. Guzelturk, T. Yang, Y. Liu, Ch.-Ch. Wei, G. Orenstein, M. Trigo, T. Zhou, B. T. Diroll, M. V. Holt, H. Wen, L.-Q. Chen, J.-Ch. Yang, and A. M. Lindenberg, “Sub-nanosecond reconfiguration of ferroelectric domains in bismuth ferrite,” Adv. Mater. 35, e2306029 (2023). https://doi.org/10.1002/adma.202306029
- F. Liu, M. M. Meerschaert, R. J. McGough, P. Zhuang, and Q. Liu, “Numerical methods for solving the multi-term time-fractional wave-diffusion equation,” Fract. Calc. Appl. Anal. 16, 9–25 (2013). https://doi.org/10.2478/s13540-013-0002-2
- Z. Buckova, M. Ehrhardt, and M. Gunther, “Alternating direction explicit methods for convection diffusion equations,” Acta Math. Univ. Comenianae 84 (2), 309–325 (2015).