Проведение гомогенизации в вязкоупругих гетерогенных средах с учётом коллективного влияния границ
Проведение гомогенизации в вязкоупругих гетерогенных средах с учётом коллективного влияния границ
Аннотация:
Получены эффективные коэффициенты вязкоупругости гетерогенной среды на основе формализма обобщённой производной, отображающей внутренние границы гетерогенной среды. Для найденного модифицированного оператора с учётом проведённого осреднения и его последующего анализа ищется решение на осреднённую функцию Грина. На основе полученного решения, выражающего решение задачи многих тел в гетерогенной среде, эффективные коэффициенты вязкоупругости интегрально учитывают микроструктуру системы (физические свойства и характерные размеры фаз) в явном виде.
Литература:
- Шварц Л. Математические методы для физических наук. М.: Мир, 1965.
- Мишин А. В. Обобщённая производная и её использование для анализа микроструктуры гетерогенной среды // Сиб. журн. индустр. математики. 2021. V. 24, № 4. С. 79–96; DOI: 10.33048/SIBJIM.2021.24.406
- Khoroshun L. P. A new mathematical model of the nonuniform deformation of composites // Mekh. Kompos. Mater. 1995. V. 31, N 3. P. 310–318.
- Khoroshun L. P. Mathematical models and methods of the mechanics of stochastic composites // Appl. Mech. 2000. V. 30, N 10. P. 30–62.
- Hashin Z., Shtrikman S. On some variational principles in anisotropic and nonhomogeneous elasticity // J. Mech. Phys. Solids. 1962. V. 10, N 4. P. 335–342.
- Hashin Z., Shtrikman S. A variational approach to the theory of the elastic behavior of multiphase materials // J. Mech. Phys. Solids. 1963. V. 11, N 2. P. 127–140.
- Hashin Z., Shtrikman S. Conductivity of polycrystals // Phys. Rev. 1963. V. 130, N 129. P. 129–133.
- Шермергор Т. Д. Теория упругости микронеоднородных сред. М.: Наука, 1977.
- Bruggeman D. A. G. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. II. Dielektrizit¨atskonstanten und Leitf¨ahigkeiten von Vielrkistallen der nichtregularen Systeme // Ann. Phys. 1936. Bd. 417, N 25. P. 645–672.
- Kroner E. Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls // Z. Phys. 1958. Bd. 151, N 4. P. 504–518.
- Hill R. A. Self-consistent mechanics of composite materials // J. Mech. Phys. Solids. 1965. V. 13, N 4. P. 213–222.
- Christensen R. M. Theory of Viscoelasticity. N. Y.: Acad. Press, 1982.
- Eshelby J. Continuum Theory of Dislocations. N. Y.: Acad. Press, 1956.
- Khoroshun L. P. Random functions theory in problems on the macroscopic characteristics of microinhomogeneous media // Appl. Mech. 1978. V. 14. P. 3–17.
- Khoroshun L. P. Conditional-moment method in problems of the mechanics of composite materials // Appl. Mech. 1987. V. 23, N 10. P. 100–108.
- Болотин В. В., Москаленко В. Н. Задача об определении упругих постоянных микронеоднородной среды // Журн. прикл. механики и техн. физики. 1968. Т. 34, № 1. С. 66–72.
- Нигматулин Р. И. Основы механики гетерогенных сред. М.: Наука, 1978.
- Бахвалов Н. С., Панасенко Г. П. Осреднение процессов в периодических средах. М.: Наука, 1984.
- Mori T., Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions // Acta Metall. 1973. V. 21. P. 571–574.
- Castaneda P. P., Willis J. R. The effect of spatial distribution on the effective behavior of composite materials and cracked media // J. Mech. Phys. Solids. 1995. V. 43. P. 1919–1951; http://dx.doi.org/10.1016/0022-5096(95)00058-Q
- Fedotov A. The hybrid homogenization model of elastic anisotropic porous materials // J. Mater. Sci. 2018. V. 53. P. 5092–5102.
- Chen L. Y. et al. Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles // Nature. 2015. V. 528. Article 7583.
- Morsi K., Patel V. V. Processing and properties of titanium-titanium boride (TiBw) matrix composites // J. Mater. Sci. 2007. V. 42, N 6. P. 2037–2047.
- Mishin A. V., Fomin V. M. Investigation of the elastic properties of the material obtained by the method of cold gas-dynamic spraying with laser treatment // Appl. Mech. Tech. Phys. 2021. N 6. P. 966–971.
- Fomin V. M. et al. Deposition of cermet coatings on the basis of Ti, Ni, WC, and B4C by cold gas dynamic spraying with subsequent laser irradiation // Phys. Mesomech. 2020. V. 23, N 4. P. 291–300.
- An Q. et al. Two-scale TiB/Ti64 composite coating fabricated by two-step process // J. Alloys Compd. 2018. V. 755. P. 29–40.
- Фомин В. М., Голышев А. А., Маликов А. Г. и др. Создание функционально-градиентного материала методом аддитивного лазерного сплавления // Прикл. математика и теор. физика. 2020. Т. 61, № 5. С. 224–234.
- Gao J. et al. Networks formed from interdependent networks // Nat. Phys. 2012. V. 8, N 1. P. 40–48.
- Huang X. et al. Robustness of interdependent networks under targeted attack // Phys. Rev. E: Stat. Nonlinear, Soft Matter Phys. 2011. V. 83, N 6. Article 065101; DOI:10.1103/PhysRevE.83.065101
- Gao J. et al. Robustness of a network of networks // Phys. Rev. Lett. 2011. V. 107, N 19. Article number 195701; DOI: 10.1103/PhysRevLett.107.195701.
- Мишин А. В. Учёт обобщённой производной и коллективного влияния фаз на процесс гомогенизации // Сиб. журн. индустр. математики. 2022. V. 25, № 4. С. 86–98.
- Khoroshun L. P. Elastic properties of materials reinforced with unidirectional short fibers // Appl. Mech. 1972. V. 8, N 10. P. 1–7.
Работа выполнена при финансовой поддержке Российского научного фонда (проект 21-19-00733).
А. В. Мишин
- Институт теоретической и прикладной механики им. С. А. Христиановича СО РАН,
ул. Институтская, 4/1, г. Новосибирск 630090, Россия - Новосибирский государственный университет,
ул. Пирогова, 1, г. Новосибирск 630090, Россия
E-mail: alekseymishin1994@gmail.com
Статья поступила 06.07.2022 г.
После доработки — 16.09.2022 г.
Принята к публикации 29.09.2022 г.
Abstract:
The effective coefficients of viscoelasticity of a heterogeneous medium are obtained on the basis of the generalized derivative formalism, which reflects the internal boundaries of a heterogeneous medium. A solution is sought for the averaged Green’s function for the found modified operator, taking into account the averaging and subsequent analysis of the operator. The effective viscoelasticity coefficients integrally take into account the microstructure of the system (physical properties and characteristic phase sizes) in an explicit form, that is a consequence of the solution obtained, which expresses the solution of the many-body problem in a heterogeneous medium.
References:
- Shvarts L. Matematicheskie metody dlya fizicheskikh nauk [Matematicheskie metody dlya fizicheskikh nauk]. Moscow: Mir, 1965 (in Russian).
- Mishin A. V. Obobshchennaya proizvodnaya i ee ispol’zovanie dlya analiza mikrostruktury geterogennoi sredy. [Generalized derivative and its use for analysis of the microstructure of a heterogeneous medium]. Siber. Zhurn. Indust. Mat., 2021, Vol. 24, No. 4, pp. 79–96 (in Russian); DOI: 10.33048/SIBJIM.2021.24.406
- Khoroshun L. P. A new mathematical model of the nonuniform deformation of composites. Mekh. Kompos. Mater., 1995, Vol. 31, No. 3, pp. 310–318.
- Khoroshun L. P. Mathematical models and methods of the mechanics of stochastic composites. Appl. Mech., 2000, Vol. 30, No. 10, pp. 30–62.
- Hashin Z., Shtrikman S. On some variational principles in anisotropic and nonhomogeneous elasticity. J. Mech. Phys. Solids, 1962, Vol. 10, No. 4, pp. 335–342.
- Hashin Z., Shtrikman S. A variational approach to the theory of the elastic behavior of multiphase materials. J. Mech. Phys. Solids, 1963, Vol. 11, No. 2, pp. 127–140.
- Hashin Z., Shtrikman S. Conductivity of polycrystals. Phys. Rev., 1963, Vol. 130, No. 129, pp. 129–133.
- Shermergor T. D. Teoriya uprugosti mikroneodnorodnykh sred [Theory of elasticity of microhomogeneous media]. Moscow: Nauka, 1977 (in Russian).
- Bruggeman D. A. G. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. II. Dielektrizit¨atskonstanten und Leitf¨ahigkeiten von Vielrkistallen der nichtregularen Systeme. Ann. Phys., 1936, Bd. 417, No. 25, pp. 645–672.
- Kroner E. Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls. Z. Phys., 1958, Bd. 151, No. 4, pp. 504–518.
- Hill R. A. Self-consistent mechanics of composite materials. J. Mech. Phys. Solids, 1965, Vol. 13, No. 4, pp. 213–222.
- Christensen R. M. Theory of Viscoelasticity. N. Y.: Acad. Press, 1982.
- Eshelby J. Continuum Theory of Dislocations. N. Y.: Acad. Press, 1956.
- Khoroshun L. P. Random functions theory in problems on the macroscopic characteristics of microinhomogeneous media. Appl. Mech., 1978, Vol. 14, pp. 3–17.
- Khoroshun L. P. Conditional-moment method in problems of the mechanics of composite materials. Appl. Mech., 1987, Vol. 23, No. 10, pp. 100–108.
- Bolotin V. V., Moskalenko V. N. Zadacha ob opredelenii uprugikh postoyannykh mikroneodnorodnoi sredy [The problem of determining the elastic constants of a micro-homogeneous medium]. Zhurn. Prikl. Mekh. Tekhn. Fiz., 1968, Vol. 34, No. 1, pp. 66–72 (in Russian).
- Nigmatulin R. I. Osnovy mekhaniki geterogennykh sred [Fundamentals of heterogeneous media mechanics]. Moscow: Nauka, 1978 (in Russian).
- Bakhvalov N. S., Panasenko G. P. Osrednenie protsessov v periodicheskikh sredakh [Averaging of processes in periodic environments]. Moscow: Nauka, 1984 (in Russian).
- Mori T., Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall, 1973, Vol. 21, pp. 571–574.
- Castaneda P. P., Willis J. R. The effect of spatial distribution on the effective behavior of composite materials and cracked media. J. Mech. Phys. Solids, 1995, Vol. 43, pp. 1919–1951; http://dx.doi.org/10.1016/0022-5096(95)00058-Q
- Fedotov A. The hybrid homogenization model of elastic anisotropic porous materials. J. Mater. Sci., 2018, Vol. 53, pp. 5092–5102.
- Chen L. Y. et al. Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles. Nature, 2015, Vol. 528, article 7583.
- Morsi K., Patel V. V. Processing and properties of titanium-titanium boride (TiBw) matrix composites. J. Mater. Sci., 2007, Vol. 42, No. 6, pp. 2037–2047.
- Mishin A. V., Fomin V. M. Investigation of the elastic properties of the material obtained by the method of cold gas-dynamic spraying with laser treatment. Appl. Mech. Tech. Phys., 2021, No. 6, pp. 966–971.
- Fomin V. M. et al. Deposition of cermet coatings on the basis of Ti, Ni, WC, and B4C by cold gas dynamic spraying with subsequent laser irradiation. Phys. Mesomech., 2020, Vol. 23, No. 4, pp. 291–300.
- An Q. et al. Two-scale TiB/Ti64 composite coating fabricated by two-step process. J. Alloys Compd., 2018, Vol. 755, pp. 29–40.
- Fomin V. M., Golyshev A. A., Malikov A. G. i dr. Sozdanie funktsional’no-gradientnogo materiala metodom additivnogo lazernogo splavleniya [Creation of a functional gradient material by additive laser fusion]. Prikl. Mat. Teor. Fiz., 2020, Vol. 61, No. 5, pp. 224–234 (in Russian).
- Gao J. et al. Networks formed from interdependent networks. Nat. Phys., 2012, Vol. 8, No. 1, pp. 40–48.
- Huang X. et al. Robustness of interdependent networks under targeted attack. Phys. Rev. E: Stat. Nonlinear, Soft Matter. Phys., 2011, Vol. 83, No. 6, article 065101; DOI:10.1103/PhysRevE.83.065101
- Gao J. et al. Robustness of a network of networks.Phys. Rev. Lett., 2011. Vol. 107, No. 19. article 195701; DOI: 10.1103/PhysRevLett.107.195701.
- Mishin A. V. Uchet obobshchennoi proizvodnoi i kollektivnogo vliyaniya faz na protsess gomogenizatsii [Taking into account the generalized derivative and the collective influence of phases on the homogenization process]. Siber. Zhurn. Indust. Mat., 2022. Vol. 25, No. 4, pp. 86–98 (in Russian).
- Khoroshun L. P. Elastic properties of materials reinforced with unidirectional short fibers. Appl. Mech., 1972, Vol. 8, No. 10, pp. 1–7.