О существовании вязких решений эволюционного уравнения с p(x)- лапласианом с одной пространственной переменной
О существовании вязких решений эволюционного уравнения с $p(x)$-лапласианом с одной пространственной переменной
Аннотация:
В настоящей статье изучается первая краевая задача для уравнения с $p(x)$-лапласианом с одной пространственной переменной при наличии градиентных членов, не удовлетворяющих условию Бернштейна—Нагумо. Определён класс градиентных нелинейностей, для которого доказано существование вязкого по Лионсу решения непрерывного по Липшицу по $x$ и по Гёльдеру по $t$.
Литература:
- Acerbi E., Mingione G. Regularity results for stationary electro-rheological fluids // Arch. Ration. Mech. Anal. 2002. V. 164. P. 213–259.
- Antontsev S. N., Rodrigues J. F. On stationary thermo-rheological viscous flows // Ann. Univ. Ferrara, Sez. VII Sci. Mat. 2006. V. 52, N 1. P. 19–36.
- Rajagopal K., Ru$\check{z}$i$\check{c}$ka M. Mathematical modelling of electro-rheological fluids // Contin. Mech. Thermodyn. 2001. V. 13. P. 59–78.
- Ru$\check{z}$i$\check{c}$ka M. Electrorheological Fluids: Modeling and Mathematical Theory. Berlin: Springer, 2000.
- Aboulaicha R., Meskinea D., Souissia A. Regularity results for stationary electro-rheological fluids // Arch. Ration. Mech. Anal. 2002. V. 164. P. 213–259.
- Chen Y., Levine S., Rao M. Variable exponent, linear growth functionals in image restoration // SIAM J. Appl. Math. 2006. V. 66, N 4. P. 1383–1406.
- Antontsev S., Shmarev S. Evolution PDEs with Nonstandard Growth Conditions: Existence, Uniqueness, Localization, Blow-up. Paris: Atlantis Press. 2015.
- Arora R., Shmarev S. Strong solutions of evolution equations with $p(x, t)$-Laplacian: Existence, global higher integrability of the gradients and second-order regularity // J. Math. Anal. Appl. 2020. V. 493, N 1. P. 1–31.
- Arora R., Shmarev S. Existence and regularity results for a class of parabolic problems with double phase flux of variable growth // Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. AMat. 2023. V. 117, N 34. P. 1–48.
- Belloni M., Kawohl B. The pseudo-$p$-Laplace eigenvalue problem and viscosity solutions as $p \to \infty$ // ESAIM: Control Optim. Calc. Variations. 2004. V. 10, N 1. P. 28–52.
- Birindelli I., Demengel F. Existence and regularity results for fully nonlinear operators on the model of the pseudo Pucci’s operators // J. Elliptic Parabol. Equ. 2016. V. 2. P. 171–187.
- Demengel F. Lipschitz interior regularity for the viscosity and weak solutions of the pseudo $p$-Laplacian equation // Adv. Differ. Equ. 2016. V. 21, N 3. P 373–400.
- Juutinen P. On the definition of viscosity solutions for parabolic equations // Proc. Amer. Math. Soc. 2001. V. 129, N 10. P. 2907–2911.
- Tersenov Ar. S. Viscosity subsolutions and supersolutions for non-uniformly and degenerate elliptic equations // Arch. Math. 2009. V. 45, N 1. P. 19–35.
- Juutinen P., Lindqvist P., Manfredi J. J. On the equivalence of the viscosity solutions and weak solutions for a quasilinear equation // SIAM J. Math. Anal. 2001. V. 33, N 3. P. 699–717.
- Medina M., Ochoa P. On viscosity and weak solutions for non-homogeneous $p$-Laplace equations // Adv. Nonlinear Anal. 2019. V. 8, N 1. P. 468–481.
- Siltakoski J. Equivalence of viscosity and weak solutions for a $p$-parabolic equation // J. Evol. Equ. 2021. V. 21, N 4. P. 2047–2080.
- Dall’Aglio A., Giachetti D., Segura de Leon S. Global existence for parabolic problems involving the $p$-Laplacian and a critical gradient term // Indiana Univ. Math. J. 2009, V. 58, N 1. P. 1–48.
- Dall’Aglio A., De Cicco V., Giachetti D., Puel J.-P. Existence of bounded solutions for nonlinear elliptic equations in unbounded domains // NoDEA Nonlinear Differ. Equ. Appl. 2004. V. 11, N 4. P. 431–450.
- Nakao M., Chen C. Global existence and gradient estimates for the quasilinear parabolic equations of $m$-Laplacian type with a nonlinear convection term // J. Differ. Equ. 2000. V. 162, N 1. P. 224–250.
- Figueiredo D. G., Sanchez J., Ubilla P. Quasilinear equations with dependence on the gradient // Nonlinear Anal. Theory Meth. Appl. 2009. V. 71, N 10. P. 4862–4868.
- Iturriaga L., Lorca S., Sanchez J. Existence and multiplicity results for the $p$-Laplacian with a $p$-gradient term // NoDEA Nonlinear Differ. Equ. Appl. 2008. V. 15, N 6. P. 729–743.
- Li J., Yin J, Ke Y. Existence of positive solutions for the $p$-Laplacian with $p$-gradient term // J. Math. Anal. Appl. 2011. V. 383, N 1. P. 147–158.
- Ruiz D. A priori estimates and existence of positive solutions for strongly nonlinear problems // J. Differ. Equ. 2004. V. 199, N 1. P. 96–114.
- Zou H. H. A priori estimates and existence for quasi-linear elliptic equations // Calc. Var. Partial Differ. Equ. 2008. V. 33, N 4. P. 417–437.
- Dwivedi G., Gupta S. An existence result for $p$-Laplace equation with gradient nonlinearity in $\mathbb{R}^N$ // Commun. Math. 2022. V. 30, N 1. P. 149–159.
- Leonori T., Porretta A., Riey G. Comparison principles for $p$-Laplace equations with lower order terms // Ann. di Mat. Pura ed Appl. V. 196, N 3. P. 877–903.
- Bendahmane M., Karlsen K. H. Nonlinear anisotropic elliptic and parabolic equations in $\mathbb{R}^N$ with advection and lower order terms and locally integrable data // Potential Anal. 2005. V. 22, N 3. P. 207– 227.
- Fu Y., Pan N. Existence of solutions for nonlinear parabolic problem with $p(x)$-growth // J. Math. Anal. Appl. 2010. V. 362, N 2. P. 313–326.
- Zhan H. On anisotropic parabolic equations with a nonlinear convection term depending on the spatial variable // Adv. Differ. Equ. 2019. V. 2019, N 27. P. 1–26.
- Zhao J. Existence and nonexistence of solutions for $u_t = div(|\nabla u|^{p−2} \nabla u) + f(\nabla u, u, x, t)$ // J. Math. Anal. Appl. 1993. V. 172, N 1. P. 130–146.
- Tersenov Al. S., Tersenov Ar. S. Existence results for anisotropic quasilinear parabolic equations with time-dependent exponents and gradient term // J. Math. Anal. Appl. 2019. V. 480, N 1. P. 1–18.
- Терсенов Ар. С. Разрешимость задачи Дирихле для анизотропных параболических уравнений в невыпуклых областях // Сиб. журн. индустр. матем. 2022. Т. 25, № 1. С. 131–146.
- Терсенов Ар. С. О существовании вязких решений анизотропных параболических уравнений с переменным показателем анизотропности // Сиб. журн. индустр. матем. 2022. Т. 25, № 4. С. 206– 220.
- Tersenov Al. S., Tersenov Ar. S. The problem of Dirichlet for evolution one-dimensional $p$-Laplacian with nonlinear source // J. Math. An. Appl. 2008. V. 340, N 2. P. 1109–1119.
- Tersenov Al. S. The one-dimensional parabolic $p(x)$-Laplace equation // Nonlinear Differ. Equ. Appl. 2016. V. 23, N 27. P. 1–11.
- Wang L. On the regularity theory of fully nonlinear parabolic equation I // Comm. Pure. Appl. Math. 1992. V. 45. P. 27–76.
- Crandall M., Ishii H., Lions P.-L. User’s guide to viscosity solutions of second order partial differential equations // Bull. Amer. Math. Soc. 1992. V. 27, N 1. P. 1–67.
- Ладыженская О. А., Солонников В. А., Уральцева Н. Н. Линейные и квазилинейные уравнения параболического типа. М.: Наука, 1967.
- Gilding B. H. Hølder continuity of solutions of parabolic equations // J. London Math. Soc. 1976. V. 13, N 1. P. 103–106.
- Kruzhkov S. N. Quasilinear parabolic equations and systems with two independent variables // Trudy Sem. Petrovsk. 1979. V. 5. P. 217–272.
Работа выполнена в рамках государственного задания Института математики им. С. Л. Соболева СО РАН (проект FWNF-2022-0008). Других источников финансирования проведения или руководства данным конкретным исследованием не было.
А. С. Терсенов
- Институт математики им. С. Л. Соболева СО РАН,
просп. Акад. Коптюга, 4, г. Новосибирск 630090, Россия
E-mail: aterseno@math.nsc.ru
Статья поступила 06.11.2023 г.
После доработки — 17.09.2024 г.
Принята к публикации 06.11.2024 г.
Abstract:
In this paper, we study the first boundary value problem for $p(x)$-Laplacian with one spatial variable in the presence of gradient terms that do not satisfy the Bernstein—Nagumo condition. A class of gradient nonlinearities is defined, for which the existence of a viscosity solution that is Lipschitz continuous in $x$ and Hölder continuous in $t$ is proven.
References:
- E. Acerbi and G. Mingione, “Regularity results for stationary electro-rheological fluids,” Arch. Ration. Mech. Anal. 164, 213–259 (2002).
- S. N. Antontsev and J. F. Rodrigues, “On stationary thermo-rheological viscous flows,” Ann. Univ. Ferrara, Sez. VII Sci. Mat. 52 (1), 19–36 (2006).
- K. Rajagopal and M. Ru$\check{z}$i$\check{c}$ka, “Mathematical modelling of electro-rheological fluids,” Contin. Mech. Thermodyn. 13, 59–78 (2001).
- M. Ru$\check{z}$i$\check{c}$ka, Electrorheological Fluids: Modeling and Mathematical Theory (Springer, Berlin, 2000).
- R. Aboulaicha, D. Meskinea, and A. Souissia, “Regularity results for stationary electro-rheological fluids,” Arch. Ration. Mech. Anal. 164, 213–259 (2002).
- Y. Chen, S. Levine, and M. Rao, “Variable exponent, linear growth functionals in image restoration,” SIAM J. Appl. Math. 66 (4), 1383–1406 (2006).
- S. Antontsev and S. Shmarev, Evolution PDEs with Nonstandard Growth Conditions: Existence, Uniqueness, Localization, Blow-up (Atlantis Press, Paris, 2015).
- R. Arora and S. Shmarev, “Strong solutions of evolution equations with $p(x, t)$-Laplacian: Existence, global higher integrability of the gradients and second-order regularity,” J. Math. Anal. Appl. 493 (1), 1–31 (2020).
- R. Arora and S. Shmarev, “Existence and regularity results for a class of parabolic problems with double phase flux of variable growth,” Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. AMat. 117 (34), 1–48 (2023).
- M. Belloni and B. Kawohl, “The pseudo-$p$-Laplace eigenvalue problem and viscosity solutions as $p \to \infty$,” ESAIM: Control Optim. Calc. Var. 10 (1), 28–52 (2004).
- I. Birindelli and F. Demengel, “Existence and regularity results for fully nonlinear operators on the model of the pseudo Pucci’s operators,” J. Elliptic Parabol. Equat. 2, 171–187 (2016).
- F. Demengel, “Lipschitz interior regularity for the viscosity and weak solutions of the pseudo $p$-Laplacian equation,” Adv. Differ. Equat. 21 (3), 373–400 (2016).
- P. Juutinen, “On the definition of viscosity solutions for parabolic equations,” Proc. Am. Math. Soc. 129 (10), 2907–2911 (2001).
- Ar. S. Tersenov, “Viscosity subsolutions and supersolutions for non-uniformly and degenerate elliptic equations,” Arch. Math. 45 (1), 19–35 (2009).
- P. Juutinen, P. Lindqvist, and J. J. Manfredi, “On the equivalence of the viscosity solutions and weak solutions for a quasilinear equation,” SIAM J. Math. Anal. 33 (3), 699–717 (2001).
- M. Medina and P. Ochoa, “On viscosity and weak solutions for non-homogeneous $p$-Laplace equations,” Adv. Nonlinear Anal. 8 (1), 468–481 (2019).
- J. Siltakoski, “Equivalence of viscosity and weak solutions for a $p$-parabolic equation,” J. Evol. Equat. 21 (4), 2047–2080 (2021).
- A. Dall’Aglio, D. Giachetti, and S. Segura de Leon, “Global existence for parabolic problems involving the $p$-Laplacian and a critical gradient term,” Indiana Univ. Math. J. 58 (1), 1–48 (2009).
- A. Dall’Aglio, V. De Cicco, D. Giachetti, and J.-P. Puel, “Existence of bounded solutions for nonlinear elliptic equations in unbounded domains,” NoDEA Nonlinear Differ. Equat. Appl. 11 (4), 431–450 (2004).
- M. Nakao and C. Chen, “Global existence and gradient estimates for the quasilinear parabolic equations of $m$-Laplacian type with a nonlinear convection term,” J. Differ. Equat. 162 (1), 224–250 (2000).
- D. G. Figueiredo, J. Sanchez, and P. Ubilla, “Quasilinear equations with dependence on the gradient,” Nonlinear Anal. Theory Meth. Appl. 71 (10), 4862–4868 (2009).
- L. Iturriaga, S. Lorca, and J. Sanchez, “Existence and multiplicity results for the $p$-Laplacian with a pgradient term,” NoDEA Nonlinear Differ. Equat. Appl. 15 (6), 729–743 (2008).
- J. Li, J. Yin, and Y. Ke, “Existence of positive solutions for the $p$-Laplacian with $p$-gradient term,” J. Math. Anal. Appl. 383 (1), 147–158 (2011).
- D. Ruiz, “A priori estimates and existence of positive solutions for strongly nonlinear problems,” J. Differ. Equat. 199 (1), 96–114 (2004).
- H. H. Zou, “A priori estimates and existence for quasi-linear elliptic equations,” Calc. Var. Partial Differ. Equat. 33 (4), 417–437 (2008).
- G. Dwivedi and S. Gupta, “An existence result for $p$-Laplace equation with gradient nonlinearity in $\mathbb {R}^N$ ,” Commun. Math. 30 (1), 149–159 (2022).
- T. Leonori, A. Porretta, and G. Riey, “Comparison principles for $p$-Laplace equations with lower order terms,” Ann. Mat. Pura Appl. 196 (3), 877–903 (2017).
- M. Bendahmane and K. H. Karlsen, “Nonlinear anisotropic elliptic and parabolic equations in $\mathbb {R}^N$ with advection and lower order terms and locally integrable data,” Potential Anal. 22 (3), 207–227 (2005).
- Y. Fu and N. Pan, “Existence of solutions for nonlinear parabolic problem with $p(x)$-growth,” J. Math. Anal. Appl. 362 (2), 313–326 (2010).
- H. Zhan, “On anisotropic parabolic equations with a nonlinear convection term depending on the spatial variable,” Adv. Differ. Equat. 2019 (27), 1–26 (2019).
- J. Zhao, “Existence and nonexistence of solutions for $u_t = div(|\nabla u|^{p−2} \nabla u) + f(\nabla u, u, x, t)$,” J. Math. Anal. Appl. 172 (1), 130–146 (1993).
- Al. S. Tersenov and Ar. S. Tersenov, “Existence results for anisotropic quasilinear parabolic equations with time-dependent exponents and gradient term,” J. Math. Anal. Appl. 480 (1), 1–18 (2019).
- Ar. S. Tersenov, “Solvability of the Dirichlet problem for anisotropic parabolic equations in non-convex domains,” Sib. Zh. Ind. Mat. 25 (1), 131–146 (2022) [in Russian].
- Ar. S. Tersenov, “On the existence of viscous solutions of anisotropic parabolic equations with a variable anisotropy exponent,” Sib. Zh. Ind. Mat. 25 (4), 206–220 (2022) [in Russian].
- Al. S. Tersenov and Ar. S. Tersenov, “The problem of Dirichlet for evolution one-dimensional $p$-Laplacian with nonlinear source,” J. Math. An. Appl. 340 (2), 1109–1119 (2008).
- Al. S. Tersenov, “The one-dimensional parabolic $p(x)$-Laplace equation,” Nonlinear Differ. Equat. Appl. 23 (27), 1–11 (2016).
- L. Wang, “On the regularity theory of fully nonlinear parabolic equation I,” Commun. Pure. Appl. Math. 45, 27–76 (1992).
- M. Crandall, H. Ishii, and P.-L. Lions, “User’s guide to viscosity solutions of second order partial differential equations,” Bull. Am. Math. Soc. 27 (1), 1–67 (1992).
- O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural’tseva, Linear and Quasilinear Equations of Parabolic Type (Nauka, Moscow, 1967) [in Russian].
- B. H. Gilding, “Hølder continuity of solutions of parabolic equations,” J. London Math. Soc. 13 (1), 103–106 (1976).
- S. N. Kruzhkov, “Quasilinear parabolic equations and systems with two independent variables,” Tr. Semin. Petrovskogo 5, 217–272 (1979) [in Russian].