Обратная задача для квазилинейного волнового уравнения с памятью

Обратная задача для квазилинейного волнового уравнения с памятью

Романов В. Г., Бугуева Т. В.

УДК 517.956 
DOI: 10.33048/SIBJIM.2025.28.104


Аннотация:

Исследованы прямая и обратная задачи для квазилинейного волнового уравнения $\square u − qu^2 − K ∗ u = 0$, в котором ядро $K(x, t)$ представимо в виде $K(x, t) = p(x)K_{0}(t)$, где $p(x)$ — непрерывная функция. Обратная задача посвящена определению функций $q(x)$ и $p(x)$. В качестве дополнительной информации в обратной задаче задаются следы производной по переменной $x$ двух решений прямой начально краевой задачи, соответствующих различным краевыми условиям, при $x = 0$ на конечном отрезке [$0, T$]. Найдены условия однозначной разрешимости прямой задачи. Для обратной задачи установлена теорема о локальном существовании решения задачи.

Литература:
  1. Fino A. Z. Critical exponent for damped wave equations with nonlinear memory // Nonlinear Anal. 2011. V. 74, N 16. P. 5495–5505.
     
  2. Liang F., Gao H. Global existence and blow-up of solutions for a nonlinear wave equation with memory // J. Inequal. Appl. 2012. Article 33; DOI: 10.1186/1029-242X-2012-33
     
  3. D’Abbicco M. A wave equation with structural damping and nonlinear memory // Nonlinear Differ. Equ. Appl. 2014. V. 21. P. 751–773; DOI: 10.1007/s00030-014-0265-2 
     
  4. D’Abbicco M., Lucente S. The beam equation with nonlinear memory // Z. Angew. Math. Phys. 2016. V. 67, N 3. P. 1–18; DOI: 10.1007/s00033-016-0655-x
     
  5. Raposo C. A., Cattai A. P.,Ribeiro J. O. Global solution and asymptotic behaviour for a wave equation type p-Laplacian with memory // Open J. Math. Anal. 2018. V. 2, N 2. P. 156–171; DOI: 10.30538/psrp-oma2018.0025 
     
  6. Boulaaras S., Kamache F., Bouizem Y., Guefaifia R. General decay and blow-up of solutions for a nonlinear wave equation with memory and fractional boundary damping terms // Bound. Value Probl. 2020. Article 172; DOI: 10.1186/s13661-020-01470-w
     
  7. Kirane M., Fino A. Z., Alsaedi A., Ahmad B. Global existence for time-dependent damped wave equations with nonlinear memory // Adv. Nonlinear Anal. 2023. V. 12. Article 20230111; DOI: 10.1515/anona-2023-0111
     
  8. Романов В. Г. Обратная задача для интегродифференциального уравнения, содержащего параметр // Докл. АН. 1996. Т. 350, № 5. С. 592–594.
     
  9. Bukhgeim A. L., Dyatlov G. V. Inverse problems for equations with memory // SIAM J. Math. Fool. 1998. V. 1, N 2. P. 1–17; DOI: 10.1201/9780429187841-2
     
  10. Seliga L., Slodi$\breve {c}$ka M. An inverse source problem for a damped wave equation with memory // J. Inverse Ill-Posed Probl. 2015. V. 24, N 2; DOI: 10.1515/jiip-2014-0026 
     
  11. Slodi$\breve {c}$ka M., Seliga L. Determination of a time-dependent convolution kernel in a non-linear hyperbolic equation // Inverse Probl. Sci. Engrg. 2015. V. 24, N 6. P. 1–19; DOI: 10.1080/17415977.2015.1101762
     
  12. Durdiev U. D. A problem of identification of a special 2D memory kernel in an integro–differential hyperbolic equation // Eurasian J. Math. Comput. Appl. 2019. V. 7, N 2. P. 4–19; DOI: 10.32523/2306-6172-2019-7-2-4-19 
     
  13. Ахматов З. А., Тотиева Ж. Д. Квазидвумерная коэффициентная обратная задача для волнового уравнения в слабо горизонтально-неоднородной среде с памятью // Владикавказ. матем. журн. 2021. Т. 23, № 4. С. 15–27; DOI: 10.46698/l4464-6098-4749-m
     
  14. Дурдиев Д. К., Сафаров Ж. Ш. Определение двумерного ядра релаксации интегродифференциального волнового уравнения // Дифференц. уравнения. 2023. Т. 59, № 2. С. 208–222; DOI: 10.31857/S0374064123020073
     
  15. Lorenzi A., Sinestrari E. An inverse problem in the theory of materials with memory I // Nonlinear Anal. 1988. V. 12. P. 1217–1335.
     
  16. Lorenzi A. Identification problems for integro-differential equations // Ill-Posed problems in Natural Sciences. 1992. P. 342–366.
     
  17. Cavaterra C., Grasselli M. Identifying memory kernels in linear thermoviscoelasticity of Boltzmann type // Math. Model. Meth. Appl. Sci. 1994. V. 4, N 6. P. 807–842.
     
  18. Janno J., von Wolfersdorf L. Inverse problems for identification of memory kernels in viscoelasticity // Math. Meth. Appl. Sci. 1997. V. 20, N 4. P. 291–314.
     
  19. Lorenzi A., Messina F., Romanov V. G. Recovering a Lame kernel in a viscoelastic system // Appl. Anal. 2007. V. 86, N 11. P. 1375–1395.
     
  20. Romanov V. G., Yamamoto M. Recovering a Lamé kernel in a viscoelastic equation by a single boundary measurement // Appl. Anal. 2010. V. 89, N 3. P. 377–390.
     
  21. Lorenzi A., Romanov V. G. Recovering two Lamé Kernels in a Viscoelastic System // Inverse Probl. Imaging. 2011. V. 5, N 2. P. 431–464.
     
  22. Романов В. Г. Трёхмерная обратная задача вязкоупругости // Докл. АН. 2011. Т. 441, № 4. С. 452–455.
     
  23.  Романов В. Г. Оценки устойчивости решения в задаче об определении ядра уравнения вязкоупругости // Сиб. журн. индустр. матем. 2012. Т. 15, № 1. C. 86–98.
     
  24. Романов В. Г. Inverse problems for differential equations with memory // Eurasian J. Math. Comput. Appl. 2014. V. 2, N 4. P. 51–80.
     
  25. Durdiev D. K., Totieva Zh. D. The problem of determining the one-dimensional matrix kernel of the system of viscoelasticity equation // Math. Meth. Appl. Sci. 2018. V. 41, N 17. P. 8019–8032.
     
  26. Дурдиев Д. К., Рахмонов А. А. Задача об определении двумерного ядра в системе интегродифференциальных уравнений вязкоупругой пористой среды // Сиб. журн. индустр. матем. 2020. Т. 23, № 2. С. 63–80.
     
  27. Kaltenbacher B., Khristenko U., Nikolic V., Rajendran L. M., Wohlmuth B. Determining kernels in linear viscoelasticity // J. Comput. Phys. 2022. V. 464. Article 111331.
     
  28. Durdiev D. K., Totieva Z. D. Kernel Determination Problems in Hyperbolic Integro-Differential Equations. Singapore: Springer-Verl, 2023.
     
  29. Romanov V. G., Bugueva T. V. An inverse problem for a nonlinear hyperbolic equation // Eurasian J. Math. Comp. Appl. 2024. V. 12, N 2. P. 134–154.
     
  30. Romanov V. G., Bugueva T. V. An one-dimensional inverse problem for the wave equation // Eurasian J. Math. Comput. Appl. 2024. V. 12, N. 3. P. 135–162.

Данная работа выполнена в рамках государственного задания Института математики им. С. Л. Соболева СО РАН (проект FWNF-2022-0009). Других источников финансирования проведения или руководства данным конкретным исследованием не было.


В. Г. Романов
  1. Институт математики им. С. Л. Соболева СО РАН, 
    просп. Акад. Коптюга, 4, г. Новосибирск 630090, Россия

E-mail: romanov@math.nsc.ru

Т. В. Бугуева
  1. Институт математики им. С. Л. Соболева СО РАН, 
    просп. Акад. Коптюга, 4, г. Новосибирск 630090, Россия
  2. Новосибирский государственный университет, 
    ул. Пирогова, 1, г. Новосибирск 630090, Россия

E-mail: bugueva@math.nsc.ru

Статья поступила 22.11.2024 г.
После доработки — 26.02.2025 г.
Принята к публикации 10.03.2025 г.

Abstract:

The forward and inverse problems are investigated for the quasilinear wave equation $\square u − qu^2 − K ∗ u = 0$ where the kernel $K(x, t)$ is represented in the form $K(x, t) = p(x)K_{0}(t)$ with $p(x)$ being a continuous function. The inverse problem is devoted to the determination of the compact functions $q(x)$ and $p(x)$. Traces of the derivative with respect to $x$ of two solutions to the forward initial–boundary value problem related to two arbitrary boundary data are given for $x = 0$ on the finite segment [$0, T$] as an additional information for the solution to the inverse problem. The conditions for the unique solvability of the forward problem.

References:
  1. A. Z. Fino, “Critical exponent for damped wave equations with nonlinear memory,” Nonlinear Anal. 74 (16), 5495–5505 (2011).
     
  2. F. Liang and H. Gao, “Global existence and blow-up of solutions for a nonlinear wave equation with memory,” J. Inequal. Appl. 33 (2012). https://doi.org/10.1186/1029-242X-2012-33
     
  3. M. D’Abbicco, “A wave equation with structural damping and nonlinear memory,” Nonlinear Differ. Equ. Appl. 21, 751–773 (2014). https://doi.org/10.1007/s00030-014-0265-2
     
  4. M. D’Abbicco and S. Lucente, “The beam equation with nonlinear memory,” Z. Angew. Math. Phys. 67 (3), 1–18 (2016). https://doi.org/10.1007/s00033-016-0655-x
     
  5. C. A. Raposo, A. P. Cattai, and J. O. Ribeiro, “Global solution and asymptotic behaviour for a wave equation type p-Laplacian with memory,” Open J. Math. Anal. 2 (2), 156–171 (2018). https://doi.org/10.30538/psrp-oma2018.0025
     
  6. S. Boulaaras, F. Kamache, Y. Bouizem, and R. Guefaifia, “General decay and blow-up of solutions for a nonlinear wave equation with memory and fractional boundary damping terms,” Bound. Value Probl. 172 (2020). https://doi.org/10.1186/s13661-020-01470-w
     
  7. M. Kirane, A. Z. Fino, A. Alsaedi, and B. Ahmad, “Global existence for time-dependent damped wave equations with nonlinear memory,” Adv. Nonlinear Anal. 12, 20230111 (2023). https://doi.org/10.1515/anona-2023-0111 
     
  8. V. G. Romanov, “Inverse problem for an integro-differential equation containing a parameter,” Dokl. Ross. Akad. Nauk 350 (5), 592–594 (1996) [in Russian].
     
  9. A. L. Bukhgeim and G. V. Dyatlov, “Inverse problems for equations with memory,” SIAM J. Math. Fool. 1 (2), 1–17 (1998). https://doi.org/10.1201/9780429187841-2
     
  10. L. Seliga and M. Slodi$\breve {c}$ka, “An inverse source problem for a damped wave equation with memory,” J. Inverse Ill-Posed Probl. 24 (2) (2015). https://doi.org/10.1515/jiip-2014-0026
     
  11. M. Slodi$\breve {c}$ka and L. Seliga, “Determination of a time-dependent convolution kernel in a non-linear hyperbolic equation,” Inverse Probl. Sci. Engrg. 24 (6), 1–19 (2015). https://doi.org/10.1080/17415977.2015.1101762
     
  12. U. D. Durdiev, “A problem of identification of a special 2D memory kernel in an integro–differential hyperbolic equation,” Eurasian J. Math. Comput. Appl. 7 (2), 4–19 (2019). https://doi.org/10.32523/2306-6172-2019-7-2-4-19
     
  13. Z. A. Akhmatov and Zh. D. Totieva, “Quasi-two-dimensional coefficient inverse problem for the wave equation in a weakly horizontally inhomogeneous medium with memory,” Vladikavkaz. Mat. Zh. 23 (4), 15–27 (2021) [in Russian]. https://doi.org/10.46698/l4464-6098-4749-m
     
  14. D. K. Durdiev and J. Sh. Safarov, “Finding the two-dimensional relaxation kernel of an integro-differential wave equation,” Differ. Equations 59 (2), 214–229 (2023). https://doi.org/10.1134/S0012266123020064
     
  15. A. Lorenzi and E. Sinestrari, “An inverse problem in the theory of materials with memory I,” Nonlinear Anal. 12, 1217–1335 (1988).
     
  16. A. Lorenzi, “Identification problems for integro-differential equations,” Ill-Posed Probl. Nat. Sci. 342–366 (1992).
     
  17. C. Cavaterra and M. Grasselli, “Identifying memory kernels in linear thermoviscoelasticity of Boltzmann type,” Math. Model. Meth. Appl. Sci. 4 (6), 807–842 (1994).
     
  18. J. Janno and L. von Wolfersdorf, “Inverse problems for identification of memory kernels in viscoelasticity,” Math. Meth. Appl. Sci. 20 (4), 291–314 (1997).
     
  19. A. Lorenzi, F. Messina, and V. G. Romanov, “Recovering a Lame kernel in a viscoelastic system,” Appl. Anal. 86 (11), 1375–1395 (2007).
     
  20. V. G. Romanov and M. Yamamoto, “Recovering a Lame kernel in a viscoelastic equation by a single boundary measurement,” Appl. Anal. 89 (3), 377–390 (2010).
     
  21. A. Lorenzi and V. G. Romanov, “Recovering two Lame kernels in a viscoelastic system,” Inverse Probl. Imaging. 5 (2), 431–464 (2011).
     
  22. V. G. Romanov, “A three-dimensional inverse problem of viscoelasticity,” Dokl. Math. 84 (3), 833–836 (2011). 
     
  23. V. G. Romanov, “Stability estimates for the solution to the problem of determining the kernel of a viscoelastic equation,” J. Appl. Ind. Math. 6 (3), 360–370 (2012). https://doi.org/10.1134/S1990478912030118
     
  24. V. G. Romanov, “Inverse problems for differential equations with memory,” Eurasian J. Math. Comput. Appl. 2 (4), 51–80 (2014).
     
  25. D. K. Durdiev and Zh. D. Totieva, “The problem of determining the one-dimensional matrix kernel of the system of viscoelasticity equation,” Math. Meth. Appl. Sci. 41 (17), 8019–8032 (2018).
     
  26. D. K. Durdiev and A. A. Rakhmonov, “The problem of determining the 2D kernel in a system of integrodifferential equations of a viscoelastic porous medium,” J. Appl. Ind. Math. 14 (2), 281–295 (2020). https://doi.org/10.1134/S1990478920020076
     
  27. B. Kaltenbacher, U. Khristenko, V. Nikolic, L. M. Rajendran, and B.Wohlmuth, “Determining kernels in linear viscoelasticity,” J. Comput. Phys. 464, 111331 (2022).
     
  28. D. K. Durdiev and Zh. D. Totieva, Kernel Determination Problems in Hyperbolic Integro-Differential Equations (Springer-Verlag, Singapore, 2023).
     
  29. V. G. Romanov and T. V. Bugueva, “An inverse problem for a nonlinear hyperbolic equation,” Eurasian J. Math. Comp. Appl. 12 (2), 134–154 (2024).
     
  30. V. G. Romanov and T. V. Bugueva, “A one-dimensional inverse problem for the wave equation,” Eurasian J. Math. Comput. Appl. 12 (3), 135–162 (2024).