Обратная задача для квазилинейного волнового уравнения с памятью
Обратная задача для квазилинейного волнового уравнения с памятью
Аннотация:
Исследованы прямая и обратная задачи для квазилинейного волнового уравнения $\square u − qu^2 − K ∗ u = 0$, в котором ядро $K(x, t)$ представимо в виде $K(x, t) = p(x)K_{0}(t)$, где $p(x)$ — непрерывная функция. Обратная задача посвящена определению функций $q(x)$ и $p(x)$. В качестве дополнительной информации в обратной задаче задаются следы производной по переменной $x$ двух решений прямой начально краевой задачи, соответствующих различным краевыми условиям, при $x = 0$ на конечном отрезке [$0, T$]. Найдены условия однозначной разрешимости прямой задачи. Для обратной задачи установлена теорема о локальном существовании решения задачи.
Литература:
- Fino A. Z. Critical exponent for damped wave equations with nonlinear memory // Nonlinear Anal. 2011. V. 74, N 16. P. 5495–5505.
- Liang F., Gao H. Global existence and blow-up of solutions for a nonlinear wave equation with memory // J. Inequal. Appl. 2012. Article 33; DOI: 10.1186/1029-242X-2012-33
- D’Abbicco M. A wave equation with structural damping and nonlinear memory // Nonlinear Differ. Equ. Appl. 2014. V. 21. P. 751–773; DOI: 10.1007/s00030-014-0265-2
- D’Abbicco M., Lucente S. The beam equation with nonlinear memory // Z. Angew. Math. Phys. 2016. V. 67, N 3. P. 1–18; DOI: 10.1007/s00033-016-0655-x
- Raposo C. A., Cattai A. P.,Ribeiro J. O. Global solution and asymptotic behaviour for a wave equation type p-Laplacian with memory // Open J. Math. Anal. 2018. V. 2, N 2. P. 156–171; DOI: 10.30538/psrp-oma2018.0025
- Boulaaras S., Kamache F., Bouizem Y., Guefaifia R. General decay and blow-up of solutions for a nonlinear wave equation with memory and fractional boundary damping terms // Bound. Value Probl. 2020. Article 172; DOI: 10.1186/s13661-020-01470-w
- Kirane M., Fino A. Z., Alsaedi A., Ahmad B. Global existence for time-dependent damped wave equations with nonlinear memory // Adv. Nonlinear Anal. 2023. V. 12. Article 20230111; DOI: 10.1515/anona-2023-0111
- Романов В. Г. Обратная задача для интегродифференциального уравнения, содержащего параметр // Докл. АН. 1996. Т. 350, № 5. С. 592–594.
- Bukhgeim A. L., Dyatlov G. V. Inverse problems for equations with memory // SIAM J. Math. Fool. 1998. V. 1, N 2. P. 1–17; DOI: 10.1201/9780429187841-2
- Seliga L., Slodi$\breve {c}$ka M. An inverse source problem for a damped wave equation with memory // J. Inverse Ill-Posed Probl. 2015. V. 24, N 2; DOI: 10.1515/jiip-2014-0026
- Slodi$\breve {c}$ka M., Seliga L. Determination of a time-dependent convolution kernel in a non-linear hyperbolic equation // Inverse Probl. Sci. Engrg. 2015. V. 24, N 6. P. 1–19; DOI: 10.1080/17415977.2015.1101762
- Durdiev U. D. A problem of identification of a special 2D memory kernel in an integro–differential hyperbolic equation // Eurasian J. Math. Comput. Appl. 2019. V. 7, N 2. P. 4–19; DOI: 10.32523/2306-6172-2019-7-2-4-19
- Ахматов З. А., Тотиева Ж. Д. Квазидвумерная коэффициентная обратная задача для волнового уравнения в слабо горизонтально-неоднородной среде с памятью // Владикавказ. матем. журн. 2021. Т. 23, № 4. С. 15–27; DOI: 10.46698/l4464-6098-4749-m
- Дурдиев Д. К., Сафаров Ж. Ш. Определение двумерного ядра релаксации интегродифференциального волнового уравнения // Дифференц. уравнения. 2023. Т. 59, № 2. С. 208–222; DOI: 10.31857/S0374064123020073
- Lorenzi A., Sinestrari E. An inverse problem in the theory of materials with memory I // Nonlinear Anal. 1988. V. 12. P. 1217–1335.
- Lorenzi A. Identification problems for integro-differential equations // Ill-Posed problems in Natural Sciences. 1992. P. 342–366.
- Cavaterra C., Grasselli M. Identifying memory kernels in linear thermoviscoelasticity of Boltzmann type // Math. Model. Meth. Appl. Sci. 1994. V. 4, N 6. P. 807–842.
- Janno J., von Wolfersdorf L. Inverse problems for identification of memory kernels in viscoelasticity // Math. Meth. Appl. Sci. 1997. V. 20, N 4. P. 291–314.
- Lorenzi A., Messina F., Romanov V. G. Recovering a Lame kernel in a viscoelastic system // Appl. Anal. 2007. V. 86, N 11. P. 1375–1395.
- Romanov V. G., Yamamoto M. Recovering a Lamé kernel in a viscoelastic equation by a single boundary measurement // Appl. Anal. 2010. V. 89, N 3. P. 377–390.
- Lorenzi A., Romanov V. G. Recovering two Lamé Kernels in a Viscoelastic System // Inverse Probl. Imaging. 2011. V. 5, N 2. P. 431–464.
- Романов В. Г. Трёхмерная обратная задача вязкоупругости // Докл. АН. 2011. Т. 441, № 4. С. 452–455.
- Романов В. Г. Оценки устойчивости решения в задаче об определении ядра уравнения вязкоупругости // Сиб. журн. индустр. матем. 2012. Т. 15, № 1. C. 86–98.
- Романов В. Г. Inverse problems for differential equations with memory // Eurasian J. Math. Comput. Appl. 2014. V. 2, N 4. P. 51–80.
- Durdiev D. K., Totieva Zh. D. The problem of determining the one-dimensional matrix kernel of the system of viscoelasticity equation // Math. Meth. Appl. Sci. 2018. V. 41, N 17. P. 8019–8032.
- Дурдиев Д. К., Рахмонов А. А. Задача об определении двумерного ядра в системе интегродифференциальных уравнений вязкоупругой пористой среды // Сиб. журн. индустр. матем. 2020. Т. 23, № 2. С. 63–80.
- Kaltenbacher B., Khristenko U., Nikolic V., Rajendran L. M., Wohlmuth B. Determining kernels in linear viscoelasticity // J. Comput. Phys. 2022. V. 464. Article 111331.
- Durdiev D. K., Totieva Z. D. Kernel Determination Problems in Hyperbolic Integro-Differential Equations. Singapore: Springer-Verl, 2023.
- Romanov V. G., Bugueva T. V. An inverse problem for a nonlinear hyperbolic equation // Eurasian J. Math. Comp. Appl. 2024. V. 12, N 2. P. 134–154.
- Romanov V. G., Bugueva T. V. An one-dimensional inverse problem for the wave equation // Eurasian J. Math. Comput. Appl. 2024. V. 12, N. 3. P. 135–162.
Данная работа выполнена в рамках государственного задания Института математики им. С. Л. Соболева СО РАН (проект FWNF-2022-0009). Других источников финансирования проведения или руководства данным конкретным исследованием не было.
В. Г. Романов
- Институт математики им. С. Л. Соболева СО РАН,
просп. Акад. Коптюга, 4, г. Новосибирск 630090, Россия
E-mail: romanov@math.nsc.ru
Т. В. Бугуева
- Институт математики им. С. Л. Соболева СО РАН,
просп. Акад. Коптюга, 4, г. Новосибирск 630090, Россия - Новосибирский государственный университет,
ул. Пирогова, 1, г. Новосибирск 630090, Россия
E-mail: bugueva@math.nsc.ru
Статья поступила 22.11.2024 г.
После доработки — 26.02.2025 г.
Принята к публикации 10.03.2025 г.
Abstract:
The forward and inverse problems are investigated for the quasilinear wave equation $\square u − qu^2 − K ∗ u = 0$ where the kernel $K(x, t)$ is represented in the form $K(x, t) = p(x)K_{0}(t)$ with $p(x)$ being a continuous function. The inverse problem is devoted to the determination of the compact functions $q(x)$ and $p(x)$. Traces of the derivative with respect to $x$ of two solutions to the forward initial–boundary value problem related to two arbitrary boundary data are given for $x = 0$ on the finite segment [$0, T$] as an additional information for the solution to the inverse problem. The conditions for the unique solvability of the forward problem.
References:
- A. Z. Fino, “Critical exponent for damped wave equations with nonlinear memory,” Nonlinear Anal. 74 (16), 5495–5505 (2011).
- F. Liang and H. Gao, “Global existence and blow-up of solutions for a nonlinear wave equation with memory,” J. Inequal. Appl. 33 (2012). https://doi.org/10.1186/1029-242X-2012-33
- M. D’Abbicco, “A wave equation with structural damping and nonlinear memory,” Nonlinear Differ. Equ. Appl. 21, 751–773 (2014). https://doi.org/10.1007/s00030-014-0265-2
- M. D’Abbicco and S. Lucente, “The beam equation with nonlinear memory,” Z. Angew. Math. Phys. 67 (3), 1–18 (2016). https://doi.org/10.1007/s00033-016-0655-x
- C. A. Raposo, A. P. Cattai, and J. O. Ribeiro, “Global solution and asymptotic behaviour for a wave equation type p-Laplacian with memory,” Open J. Math. Anal. 2 (2), 156–171 (2018). https://doi.org/10.30538/psrp-oma2018.0025
- S. Boulaaras, F. Kamache, Y. Bouizem, and R. Guefaifia, “General decay and blow-up of solutions for a nonlinear wave equation with memory and fractional boundary damping terms,” Bound. Value Probl. 172 (2020). https://doi.org/10.1186/s13661-020-01470-w
- M. Kirane, A. Z. Fino, A. Alsaedi, and B. Ahmad, “Global existence for time-dependent damped wave equations with nonlinear memory,” Adv. Nonlinear Anal. 12, 20230111 (2023). https://doi.org/10.1515/anona-2023-0111
- V. G. Romanov, “Inverse problem for an integro-differential equation containing a parameter,” Dokl. Ross. Akad. Nauk 350 (5), 592–594 (1996) [in Russian].
- A. L. Bukhgeim and G. V. Dyatlov, “Inverse problems for equations with memory,” SIAM J. Math. Fool. 1 (2), 1–17 (1998). https://doi.org/10.1201/9780429187841-2
- L. Seliga and M. Slodi$\breve {c}$ka, “An inverse source problem for a damped wave equation with memory,” J. Inverse Ill-Posed Probl. 24 (2) (2015). https://doi.org/10.1515/jiip-2014-0026
- M. Slodi$\breve {c}$ka and L. Seliga, “Determination of a time-dependent convolution kernel in a non-linear hyperbolic equation,” Inverse Probl. Sci. Engrg. 24 (6), 1–19 (2015). https://doi.org/10.1080/17415977.2015.1101762
- U. D. Durdiev, “A problem of identification of a special 2D memory kernel in an integro–differential hyperbolic equation,” Eurasian J. Math. Comput. Appl. 7 (2), 4–19 (2019). https://doi.org/10.32523/2306-6172-2019-7-2-4-19
- Z. A. Akhmatov and Zh. D. Totieva, “Quasi-two-dimensional coefficient inverse problem for the wave equation in a weakly horizontally inhomogeneous medium with memory,” Vladikavkaz. Mat. Zh. 23 (4), 15–27 (2021) [in Russian]. https://doi.org/10.46698/l4464-6098-4749-m
- D. K. Durdiev and J. Sh. Safarov, “Finding the two-dimensional relaxation kernel of an integro-differential wave equation,” Differ. Equations 59 (2), 214–229 (2023). https://doi.org/10.1134/S0012266123020064
- A. Lorenzi and E. Sinestrari, “An inverse problem in the theory of materials with memory I,” Nonlinear Anal. 12, 1217–1335 (1988).
- A. Lorenzi, “Identification problems for integro-differential equations,” Ill-Posed Probl. Nat. Sci. 342–366 (1992).
- C. Cavaterra and M. Grasselli, “Identifying memory kernels in linear thermoviscoelasticity of Boltzmann type,” Math. Model. Meth. Appl. Sci. 4 (6), 807–842 (1994).
- J. Janno and L. von Wolfersdorf, “Inverse problems for identification of memory kernels in viscoelasticity,” Math. Meth. Appl. Sci. 20 (4), 291–314 (1997).
- A. Lorenzi, F. Messina, and V. G. Romanov, “Recovering a Lame kernel in a viscoelastic system,” Appl. Anal. 86 (11), 1375–1395 (2007).
- V. G. Romanov and M. Yamamoto, “Recovering a Lame kernel in a viscoelastic equation by a single boundary measurement,” Appl. Anal. 89 (3), 377–390 (2010).
- A. Lorenzi and V. G. Romanov, “Recovering two Lame kernels in a viscoelastic system,” Inverse Probl. Imaging. 5 (2), 431–464 (2011).
- V. G. Romanov, “A three-dimensional inverse problem of viscoelasticity,” Dokl. Math. 84 (3), 833–836 (2011).
- V. G. Romanov, “Stability estimates for the solution to the problem of determining the kernel of a viscoelastic equation,” J. Appl. Ind. Math. 6 (3), 360–370 (2012). https://doi.org/10.1134/S1990478912030118
- V. G. Romanov, “Inverse problems for differential equations with memory,” Eurasian J. Math. Comput. Appl. 2 (4), 51–80 (2014).
- D. K. Durdiev and Zh. D. Totieva, “The problem of determining the one-dimensional matrix kernel of the system of viscoelasticity equation,” Math. Meth. Appl. Sci. 41 (17), 8019–8032 (2018).
- D. K. Durdiev and A. A. Rakhmonov, “The problem of determining the 2D kernel in a system of integrodifferential equations of a viscoelastic porous medium,” J. Appl. Ind. Math. 14 (2), 281–295 (2020). https://doi.org/10.1134/S1990478920020076
- B. Kaltenbacher, U. Khristenko, V. Nikolic, L. M. Rajendran, and B.Wohlmuth, “Determining kernels in linear viscoelasticity,” J. Comput. Phys. 464, 111331 (2022).
- D. K. Durdiev and Zh. D. Totieva, Kernel Determination Problems in Hyperbolic Integro-Differential Equations (Springer-Verlag, Singapore, 2023).
- V. G. Romanov and T. V. Bugueva, “An inverse problem for a nonlinear hyperbolic equation,” Eurasian J. Math. Comp. Appl. 12 (2), 134–154 (2024).
- V. G. Romanov and T. V. Bugueva, “A one-dimensional inverse problem for the wave equation,” Eurasian J. Math. Comput. Appl. 12 (3), 135–162 (2024).